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and in its immediate vicinity, Fig. 1, and fit the
asymptotic behavior L(y) -y' for large y. The re-
sults do not coincide in the periodic regime, Fig.
2, but they could have been made to agree if we
had chosen noise amplitudes differing by factors
of z, instead of factors of 100. This more re-
stricted scaling follows from considerations of
the type enunciated above.

These results appear to us to be both exciting
and highly provocative. A theoretical picture of
the transition to turbulence is just beginning to
emerge; the analogy to critical phenomena should
lead to new and important insights into the nature
and characteristics of this transition.
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The effect of noise on systems which undergo period-doubling transitions to chaos is
studied. With the aid of nonequilibrium field-theoretic techniques, a correlation-func-
tion expression for the Lyapunov parameter (which describes the sensitivity of the sys-
tem to initial conditions) is derived and shown to satisfy a scaling theory. Since these
transitions have previously been shown to exhibit universal beh&»« this theory pre-
dicts ueivexsal effects for the noise. These predictions are in good agreement with
numerical experiments.
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During the past few years, the onset of chaotic
behavior, after a sequence of period-doubling
transitions, has been extensively studied. Feigen-
baum' has obser ved that thes e transition sequenc-
es exhibit "universal" features akin to those of
phase transitions; Collet and Eckmann' have
noted that these universal features are shared
by differential equations and multidimensional
maps in which chaos is preceded by a sequence
of period doublings; and Libchaber and Maurer'
have observed this phenomenon in a convective
cell with small aspect ratio. Recently, Huber-
man and Rudnick4 have related one of the pretran-

sitional parameters identified by Feigenbaum
with the growth of disorder (i.e., the Lyapunov
parameter) in the chaotic regime, and Huberman
and Crutchfield' have examined numerically the
effect of external noise on the onset of chaos.
Nevertheless, many connections between period-
doubling chaotic transitional phenomena and the
critical phenomena at second-order phase transi-
tions remain unclear.

The purpose of this Letter is the following:
(1) to present a scaling theory (in which "noise"
and "stress" play the role of external field and

temperature) for systems that become chaotic
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via the period-doubling mechanism, and (2) to
compare the dependence on noise and stress of
the Lyapunov exponent predicted by this theory
with numerical experiments performed by Huber-
man and collaborators. ' Our results, found by
field-theoretic methods designed for nonequili-
brium systems, clarify some connections be-
tween phase transitions and the onset of chaos.
These methods identify the Lyapunov exponent
with the "long-time" limit of the nonequilibrium
response function introduced by Martin, Siggia,
and Rose. '

The Lyapunov exponent, A., describes how solu-
tions that were initially close to one another
evolve after a long time (or many steps). Its
sign and magnitude provide a measure of the
"sensitivity of the system to initial conditions";
a large negative value implies great insensitivity
to initial differences, a vanishing value implies
that initial differences neither grow nor decay,
and a large positive value implies rapid separa-
tion and great sensitivity.

Our principal quantitative result is that, at
corresponding stress points between successive
period doubling transitions, as a function of the
noise amplitude, 0; of the noise and the magnitude
of the difference between the stress, ~, and the
stress, r„, at which the onset to chaos occurs

and

t =(ln2)/ln6=0. 4498. . .

u = (in2) /inP ~0.34. . . .

(2a)

(2b)

The quantity, 6=4.669. . . , is Feigenbaum's uni-
versal scaling parameter for functions f(x) with
quadratic maxima and P is a scaling parameter,
associated with the noise, whose value we have
calculated in a second-order approximation to be
P-"7.7. . .

Let us consider the one-dimensional difference
equation

x „=f„(x )+(.
The dynamical variable x ranges over the inter-
val [—1, 1], the function f„(x) has its maximum
value, f„(0)=1, at x =0, and $ is a Gaussian
random variable with ($ ) =0 and ($ $ .)=0'5„
We analyze this stochastic difference equation,
using a discrete version of the path-integral
formulation' developed for stochastic nonlinear
Langevin equations. The average of the function-
al E[(x)] over sequences (x}which obey Eq. (3)
is given by

without noise, the Lyapunov parameter satisfies

A.(r„r-; v) =(r„-r)'C((r„—r) 'o");

with

&E[{x)]&=Z-'( „f dy. u( y. - x) E[( y)]) =Z-'f[uy][as]E[{y)](exp(its [y +, -f„(y ) —( ]))
=Z 'J[Z)x][ns]E[(y)]expn„(x, s, 0)

with

n, {x,s, o) =+{is [x „-f„(x„)]——,'v's ').

Specifically, the correlation function is given by

&x x i)=Z ' f[a ][xmas] xx~ exp'„(x, s, o).

We also introduce the Martin-Siggia-Rose response function, R(r, cr; m —m ) —= i(x„s,),
R(r, o;m —m') =Z ' J[ax][ns]ix s .exp'„(x, s, 0)

which depends on both x and s, the variable "conjugate" to x, to define the Lyapunov parameter in the
presence of noise. Let X~(y) be the expectation value of x„in the ensemble with the initial condition
+p y. We then have for large

exp(AN) = lim [X„{y+c)—X~(y)]/c =Z 'e ' J [X)x][&s]x„exp'„(x,s, o)(exp[iesof„'(xo)] —lj
A~~y & 0

if„'(y) (x„s,) =f„'(y)R(r, o", N) . (7)

As observed originally by Feigenbaurn, it is sometimes preferable to study the iterated equation
which, for weak noise, takes the form

x„„=f„(x;n) + ( ' g„(x;n)
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in terms of the 2"-th iterate of f„
f„(x;n) =f„of„of„o of„(x).

V'

2" terms

We call this iterative process "coarse-graining. " If f„(x)=f„(x;0) has a period-2 limit cycle, then
f„(x; 1) has a pair of isolated fixed points; similarly, a four-cycle becomes a pair of two-cycles, etc.
As a result of coarse graining, the function g„(x;n) appears, which, along with f„(x;n), is assumed to
approach a fixed point through the coarse graining and rescaling transformations. Approximate ex-
pressions for the scaling variables are obtained by explicitly integrating over every other x variable
in the functional integral.

With these ideas in mind, let us introduce ( )„ to describe expectations computed at the nth coarse-
graining level, i.e.,

R(r, o;¹n)—= i(x~s, )„=Z f[S x][us]i x„s,e xpQ„( xs, o;n)

with

Q„(x, s, o;n) =-+{is [x „-f„(x;n)]——,
' o's 'g„'(x;n)). (9)

We can also express the Lyapunov parameter in terms of the coarse-grained response function,

exp(AÃ) =f„'(y; n)R(r, O'; N; n) . (10)

Note that the quantity f„'(y;n) is the "stability parameter" for a 2"-cycle with given r.
To find the desired recursion relations for f„(x) and g„(x) we first integrate over every even s„ in

the ". partition function"

Z =- N f[nx][&s]expQ„(x, s, cr;n) =N ([X)x][us]expQ„(x, s, cr; n)
odd

with

Q„(x, s, o; n) —= p {is [x,-f„(x;n) ] ——'o's ' g„'(x; n) )

——,'o ' P {g '(x;n)[x„„-f„(x;n)]').
even I

We next calculate the x integrals for odd values of m in the saddle-point approximation, obtaining

Z=N f[nx][Ss]expQ„'(x, s, o;n)
even odd

with

Q„'(x, s, o", n) -=5" {is [x „-f„(f„(x „n);n}]

--,'o's '[g„'(f„(x „n);n)+f„"(f„(x „n);n}g„'(x „n)J.
Equation (12) leads to the coarse-graining recursion relations,

f„(x;n + 1) =f„(f„(x;n); n), g„(x;n + 1) =f„' (f„(x;n); n}g„2(x;n) +g„'(f„(x;n); n} .

Rescaling Eq. (13) by

x '=-e 'x, and s '=-ns,
using Feigenbaum's result,

f„(x;n+1)=-u 'f„(-crx;n),
and assuming the existence of a fixed point for

(12)

(13)

g„„(x;n+ 1) = Po, 'g„(ox; n)
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(where P is a multiplicative renormalization constant for the noise amplitude, and r„and r„„are, re-
spectively, points with corresponding stability for the 2"- and 2" '-cycle), we find

g„,(x, s, v; n +1) = A„(x ', s', Pv; n) .
This leads to a scaling form for the response function

R (r„, o';
¹ n) = Z ' J [ux ] [&s]zx„s, expO„(x, s, v; n)

= Z ' f[Sx ' ][Ss ' ]ix„~,'s, '
exp Q„(x', s ', /3v; n —1)= R(z'„„Pv; ,' N; n ——1).

(14)

(15)

z(r„; v) = 2"Z(r„, ; P™v). (16)

Let us first examine the behavior of A. as a func-
tion of v at z.„. From Eq. (16), we see that

Z(r„; v) =2 X(r„;P o);

whence, assuming that A(z „;v) is proportional to
&", we find

The factor —,
' multiplies N since coarse graining

doubles the length of the unit iteration step.
We have searched for the approximate fixed

points of Eq. (13) by using linear and quadratic
approximations for g„(x). The linear approxima-
tion leads to an expression for P'= o2+6', en-
tirely in terms of Feigenbaum's universal con-
stants. In the quadratic approximation we obtain
the value' p~7. 7. For large enough n, Eqs. (10)
and (15) imply that X(r„;v) =2k(z'„+, , p 'v) which,
upon iteration, yields

! From Eq. (1), we can calculate how, as the ex-
ternal noise is varied, the point x„at which the
Lyapunov parameter changes sign, is shifted.
Since (r„—z', ) 'v" must be constant for vg0, we
see that y, defined by (r„z,'—) —v~, satisfies

y = u/t = 0.75. . . . (19)

In careful numerical experiments, Huberman and
collaborators' have found

u=0. 37+0.02 and y=0.82+0.02

which agree satisfactorily with our simple ap-
proximate values, 0.34 and 0.75.

This work is supported in part by the National
Science Foundation under Grant No. DMR-77-
10210. One of us (C. E. W. ) is a National Science
Foundation Predoctoral Fellow.

u = (In2)/lnP ~ 0.34. . . . (2b')

Since x~ —x„ is proportional to 6, we can re-
write Eq. (16) as

a(r„—r„; v) = 2 A( 6 "(z „—z „);P v) . (17)

Introducing t = (In2)/In& =0.4498. . . , and fixing
the first argument on the right-hand side of Eq.
(17) at some small constant value, we are led to

and the zero-noise scaling relation,

z(z.„—r„;0) -(z „-~„)'. (18)

Equation (18) gives the same scaling exponent
for the Lyapunov parameter below threshold that
Huberman and Rudnick previously obtained for
this parameter beyond threshold in the chaotic
regime. Our relation, which complements theirs,
holds only when the Lyapunov exponent is calcu-
lated for corresponding values of the stability
parameter, i.e., it describes the curve connect-
ing the points in each 2 -cycle which have equal
stability parameters. With this understanding,
we see that the same power law describes the
Lyapunov exponent above and below threshold.
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An additional interesting property of P has been
brought to our attention: P is approximately equal to
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p, the ratio of the intensity of successive subharmonics
in the power spectrum studied by M. Feigenbaum fPhys.
Lett. 74A, 375 {1979)],who found p, ~ 4&)2(1+ Q 2)]1~2.

The current best values of P and p, are, respectively,
6.618 and 6.557. That P and the noise-free" parameter
p are related can be made plausible by requiring the

ratio of the intensities of the noise-induced power
spectra for chaotic transitions at r„and r„+1 to coin-
cide with the ratio of the spectral peaks at corresponding
values of the control parameter, and performing a
field-theoretic calculation which identifies the former
ratio with the ratio of noise levels causing the transition.
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The geometric structures of the clean 2X1 reconstructed and the hydrogen-stabilized
(1X 1)2H Si(100) surface have been studied by means of ion channeling and blocking. The

0
latter surface appears to be contracted by 0.08+ 0.03 A and has a surface Debye tempera-
ture of -230 K. For the 2&&1 surface it is shown that only the surface dimer models by
Appelbaum and Hamann and by Chadi agree well with the backscattering data. The silicon

(.:

atoms in the very surface are displaced more than 0.45 A in the surface dimer direction,
0

but those in deeper layers are displaced less than -0.2 A.

PACS numbers: 68.20.+ t, 61.80.Mk

A large number of investigations, both theore-
tical and experimental, have been dedicated to
the problem of determining the structure of the
clean Si(100) surface. These efforts have yielded
structural models for this surface, but have not
yet yielded a solution to the problem. ' The mod-
els proposed can be divided into two main cate-
gories. First there are models that explain the
observed low-energy electron-diffraction (LEED)
patterns by assuming missing rows in the sur-
face, leading to an increase in the surface unit
cell. All other models attribute the reconstruc-
tion to displacements of surface atoms from bulk
lattice positions. Recently subsurface displace-
ments have been included in both types of models.
The simplest surface-vacancy model has missing
rows giving rise to a 2&i LEED pattern. A
more complicated model, proposed by Poppen-
dieck, Gnoc, and Webb, ' combines missing rows
in the two outer layers of the crystal with dis-
placements in the three outer layers. The LEED
pattern belonging to this model is c(4 &2), ob-
served in several LEED experiments and with He
diffraction. ' The dimer model is an example of
the second category. Surface atoms, having two
dangling bonds, form a dimer to lower their en-
ergy. In the simplest case, only surface atoms
are involved. 4 The conjugated-chain model' also
features a pairing of rows in the outer crystal
layer. Appelbaum and Hamann' showed that the

energy can be lowered further by displacing sub-
surface atoms from their bulk positions when a
symmetric dimer is formed between Si surface
atoms. Chadi calculated that tilting the surface
dimer is energetically even more favorable. '
LEED studies show reasonable agreement with
models from both classes, even when these mod-
els differ drastically. He diffraction results
have confirmed the existence of the c(4 X2) struc-
ture, along with p(2 &2) and possibly c(2 &2)
regions. ' Chadi presented arguments in favor of
2 &2 reconstructions against a pure 2x1 recon-
struction. ' The 2&2 reconstructions are ob-
tained by a rearrangement of the asymmetric
surface dimers, still including subsurface dis-
tortions. Photoemission experiments, in which
the dispersion of the intrinsic surface state was
determined, gave evidence for an asymmetric-
dimer model. '

Medium-energy ion scattering with the com-
bined effects of channeling and blocking has been
shown to be extremely sensitive to surface struc-
tural parameters such as atomic displacements
and thermal vibrations. " It is a quantitative
technique and the experimental results are, in
general, easily interpreted. We have used this
technique to determine the structure of the
Si(100)-(1x 1)2H surface, "to establish some
essential structural parameters of the Si(100)-
(2 &1) reconstructed surface, and to investigate
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