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Scaling for External Noise at the Onset of Chaos
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The effect of external noise on the transition to chaos for maps of the interval which
exhibit period-doubling bifurcations are considered. It is shown that the Liapunov
characteristic exponent satisfies scaling in the vicinity of the transition. The critical
exponent for noise is calculated with the use of Feigenbaum’s renormalization group ap-
proach, and the scaling function for the Liapunov characteristic exponent is obtained
numerically by iterating a map with additive noise.
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The notion that the transition to turbulence in
fluids has universality properties similar to those
of critical phenomena has been suggested by
Feigenbaum® on the basis of the scaling behavior
of mathematical models near the onset of chaos.?
A further impetus for an analogy between the
transition to chaos and critical point phase transi-
tions was given?® by the observation that as a con-
trol parameter 7 in these models increases past
a critical value 7, into the chaotic regime the
measure-theoretic entropy—the Liapunov charac-
teristic exponent X—has an envelope curve of the
form (# - 7,)". The universal exponent 7 is given
by 7=1n2/In6=0.4498069. .., where 6 is the max-
imum eigenvalue associated with perturbations
about the invariant map! of the interval. The
transition to chaos in these models is heralded
by a cascade of period-doubling bifurcations,?
which is also of interest to an understanding of
the onset of turbulence in physical systems.*

Motivated by the interpretation of experiments
in fluids® and solids and by some recent numeri-
cal calculations,®” we have considered theoreti-
cally the effect of added external noise on the
transition to chaos in maps of the interval. The
main result to be reported here is that the noise
amplitude behaves as a scaling variable and that
the dependence of the Liapunov characteristic ex-
ponent X on the noise amplitude ¢ and 7=(7-7,)/
7, is of the scaling form

X(7, 0)=0°L(7/a?) (1)
with L(y) a universal function, and 6 and y uni-
versal exponents. In the limit of vanishing noise
0 -0 we have X< 7" which implies that as y =,
L(y) <7, and leads to the exponent relation 6
=yT.

The idea that the noise plays a role parallel to l

that of the ordering field in a ferromagnetic tran-
sition was conjectured previously in Ref. 7. The
noise exponent 6 is a new critical exponent which
we evaluate from an extension of Feigenbaum’s
scaling theory. Our result agrees with the re-
cently observed value” of 6 to within the limits of
accuracy of the measurement. We also report on
the measured form of the scaling function L(y).

We start out by specifying the form of the one-
dimensional map with additive noise. It is de-
fined by the stochastic recursion relation

xK+1=f(xK;/r)+£Ko (2)

with f(x; 7) a continuous function of x in a finite
interval having a parabolic maximum, and 7 a
parameter that controls the shape of the function.?
A common example is the function 7x(1 - x) with
0<7 <4, and 0 <x <1. The quantity &, is a ran-
dom variable controlled by an even distribution of
unit width, and o is a variable that controls the
width (or amplitude) of the noise. Note that when
o=0 the map is perfectly deterministic.

We consider successive iterations of the sto-
chastic map, Eq. (2) with 7 at the critical value
7., following techniques introduced by Feigen-
baum. Setting the origin of coordinates to the x
for which the function f(x; 7) is a maximum and
rescaling this maximum to 1, the 2"th iterate of
f(x; 7,) converges to (- a) "g(a"x), where g(x) is
a universal map satisfying the equation

g(g(x)) = - a g(ax) (3)

with @ == 1/g(1). Adding a small amount of noise
£0, we assume that the corresponding 2"th iter-
ate of the map converges to (- a) " g(a"x)

+ ¢0k"D{a"x)] with D(x) a universal x-dependent
noise amplitude function and k a constant. When
¢ is small enough, we have

g(g(x) + £0D(x)) + £'0D(g(x) + £0D(x)) ~g(g(x)) + £0g'(&( %)) D(x) + £'0D(g(x)) + O(0?)
=g(g(x)) + £"o{[g"(g(x))D(x)]? + [D(g(x)) ]2} /2. (4)
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In going to the last line we used the fact that £
and £’ are independent random variables, and
that ¢” is also a random variable. This and our
above assumption implies that D(x) must satisfy
the eigenvalue equation

KD(ax) = a{[g(g(x)D(x))* +[D(g(x)]32  (5)
We have solved Eq. (5) for the eigenvalue « and
the corresponding eigenfunction D(x) using the
known results' for @ and g(x). Carrying out a
calculation involving a polynomial interpolation
for D(x) we have found k=6.61903... .

In the immediate vicinity above the transition
to chaos the invariant probability distribution as-
sociated with the stochastic map will consist of
2" bands, where % is an integer that grows in the
case of the deterministic map by unit steps to in-
finity as the transition is approached.®?® In the
case of the stochastic map, # grows to a finite
value—and then decreases by unit steps as one
passes to the other side of the transition. This
modification of the deterministic bifurcation se-
quence is called a bifurcation gap.®

We now extend to the present case the previous
discussion in Ref. 2 of the scaling behavior of the
Liapunov characteristic exponent X, given by

N
X=lim £ 33 1n|fAxy; A (6)
N> k=1
or alternatively
X= Jp(x) In|f’ (x; 7)| dx, (7
20
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FIG. 1. Numerical determination of the scaling func-
tion L(y), Eq. (1). The quantity Ao~? is plotted against
100 values of y =70~ 7 at each of three noise levels:
0=10"%, 10”8, and 10"1°. X was calculated with use
of Eq. (6), with N = 10® and with £, a uniformly dis~
tributed random number of standard deviation o.
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where p(x) is the invariant probability distribution
associated with the map. Applying the above-
mentioned considerations we obtain'®

X=2""L(d"7, k"a). (8)
Now, we assume that there will be 2" bands in
the chaotic regime when k"¢ is of order unity so
that #n=-1no/Ink. Substituting this result into
Eq. (9) we obtain Eq. (1) for X with the two ex-
ponents 6 and y given in terms of Feigenbaum’s
eigenvalue 6 and the new eigenvalue k by 6=1n2/
Ink=0.366754. .. and y=1n6/Ink=0.815359... .
The appearance of a bifurcation gap implies that
L(y) vanish at some y =y, which in turn implies
that the maximum number % of bifurcations is
determined by the relation 7, ;. =9,07. This be-
havior has been observed numerically.®

Measurements of the behavior of X as a function
of o at ¥=0 have already been made by numerical-
ly calculating X according to Eq. (6) with varying
amounts of noise.” The measured value for 6 is
0.37+0.01. This agrees with our theoretical
value for 0 to within the experimental error.

To verify the existence of the scaling function
L(y) of Eq. (1) we used our values of 6 and 7 to
plot Xo~9 with X the result of numerical calcula-
tions of Eq. (6), as a function of 70~7, The re-
sults are shown in Figs. 1 and 2 for three differ-
ent noise levels: ¢=10"% 10°% and 107'° The
results for those three different noise levels all
fall on a universal curve in the chaotic regime,
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FIG. 2. Ac~? is plotted again, but over a wider
range of y = 70”7 to illustrate the scaling regime. See
text for discussion of various features. The details
are the same as in Fig. 1, expect that X was calculated
with N = 10° in Eq. (6).
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and in its immediate vicinity, Fig. 1, and fit the
asymptotic behavior L(y) ~y7 for large y. The re-
sults do not coincide in the periodic regime, Fig.
2, but they could have been made to agree if we
had chosen noise amplitudes differing by factors
of k, instead of factors of 100. This more re-
stricted scaling follows from considerations of
the type enunciated above.

These results appear to us to be both exciting
and highly provocative. A theoretical picture of
the transition to turbulence is just beginning to
emerge; the analogy to critical phenomena should
lead to new and important insights into the nature
and characteristics of this transition.
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The effect of noise on systems which undergo period-doubling transitions to chaos is
studied. With the aid of nonequilibrium field-theoretic techniques, a correlation-func-
tion expression for the Lyapunov parameter (which describes the sensitivity of the sys-
tem to initial conditions) is derived and shown to satisfy a scaling theory. Since these
transitions have previously been shown to exhibit universal behavior, this theory pre-
dicts universal effects for the noise. These predictions are in good agreement with

numerical experiments.
PACS numbers:

During the past few years, the onset of chaotic
behavior, after a sequence of period-doubling
transitions, has been extensively studied. Feigen-
baum® has observed that these transition sequenc-
es exhibit “universal” features akin to those of
phase transitions; Collet and Eckmann® have
noted that these universal features are shared
by differential equations and multidimensional
maps in which chaos is preceded by a sequence
of period doublings; and Libchaber and Maurer?
have observed this phenomenon in a convective
cell with small aspect ratio. Recently, Huber-
man and Rudnick® have related one of the pretran-
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sitional parameters identified by Feigenbaum
with the growth of disorder (i.e., the Lyapunov
parameter) in the chaotic regime, and Huberman
and Crutchfield® have examined numerically the
effect of external noise on the onset of chaos.
Nevertheless, many connections between period-
doubling chaotic transitional phenomena and the
critical phenomena at second-order phase transi-
tions remain unclear,

The purpose of this Letter is the following:
(1) to present a scaling theory (in which “noise”
and ‘“stress” play the role of external field and
temperature) for systems that become chaotic
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