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Optical Tristability
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It is predicted with use of a simplified model that a Fabry-Perot cavity filled with atoms
with Zeeman. sublevels in the ground state should exhibit optical tristability via optical
pumping. For linearly polarized incident light, three stable states appear in the polari-
zation of the transmitted light; 0+ dominant, 0 dominant, and linear polarizations. This
optical tristability is discussed in the context of a butterfly catastrophe.

PACS numbers: 42.65.Gv, 32.80.Bx, 42.10.Nh

In recent years the phenomenon of optical bi-
stability has drawn considerable interest from
the aspect of practical application as optical de-
vices' and also from the fundamental standpoint
as a model for studying the interaction between
an ensemble of atoms and a radiation field. ' Ex-
perimentally Gibbs, Mccall, and Venkatesan'
showed that a Fabry-Perot cavity filled with so-
dium as a nonlinear medium exhibits optical bi-
stability. They utilized nonlinear dispersion due
to hyperfine pumping in the ground state.

In this paper we show that a Fabry-Perot cav-
ity filled with atoms having degenerate Zeeman
sublevels in the ground state exhibits optical tri-
stability. A remarkable feature of the phenome-
non is as follows. In the case of linearly polar-
ized incident light, the polarization of the trans-
mitted light can take a o+-dominant (almost right-
circularly polarized) state or a cr -dominant (al-
most left-circularly polarized) state in addition
to a linearly polarized state. In the o,- (o -)
dominant state the atomic spins in the ground
state are oriented parallel (antiparallel) to the
direction of the incident light beam. The spon-
taneous orientation comes from competitive in-
teractions between the 0, and 0 light beams in
the cavity through optical pumping.

We consider atoms with energy levels indicated
in Fig. 1. The spin-up level ~+) and spin-down
level ~-) in the ground state are degenerate and
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FIG. 1. Simplified atomic level scheme.
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where d is the atomic dipole moment, y„ is the
relaxation rate for optical coherence, &, is the
transition frequency, and L = (d, —w is the atomic
detuning.

The steady-state solutions of Eq. (1) are
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With use of Eq. (3) the absorption coefficients a,
and the wave numbers k, for the o and 0 light
are

(4)

(5)

where k, is the wave number in vacuum. For
simplicity we will neglect the absorption losses
by taking relatively large values of ~b, ~. Inclu-
sion of absorption losses will not change the es-

have equal number densities N, =N =N/2 in the
absence of light beams, where N is the total
atomic density. The optically excited levels are
represented by a single level ~e), which is possi-
ble when these levels are completely mixed by
atomic collisions. In such a three-level system,
the effect of optical pumping is described by the
rate equations for N+ and N:

dN, /dt = —P, N, +P, N, —(I /2)(N, N, ), -
where I' is the spin-relaxation rate, and the
pumping rates P, have been assumed to be small-
er than the decay rate y of the excited state,
which therefore has negligible population. The
rates I', are expressed in terms of the light in-
tensities (photon flux) I, and the absorption cross
section o by I', = -,oI,. For homogeneously broad-
ened medium, the absorption cross section cr for
monochromatic light of the frequency w is given
by
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Ir, =T'I,„[1+R —2R cos2k, L] ', (6)

where I~, are the incident light intensities, I~,
are the transmitted light intensities, A is the
reflectivity of the mirrors, and T =1—R is the
transmissivity. The wavelengths k, are assumed
to be constant over the entire cavity length L be-
cause standing-wave structure of the spin-polar-
ized atoms which have relatively long relaxation
time is washed out by their thermal motion. The

sential features of our discussion. The transmis-
sion characteristics of a, lossless Fabry-Perot
cavity are described by the equation

moving atoms are pumped by mean-field intensi-
ties in the cavity which are related to I~, by

With use of Eqs. (3) and (7) the expressions (5)
for k, become

k, =k, +2~(X, +1)/(X, +X +2),

where ~ = (v/2)(b/y„)(N/2) is the linear disper-
sion and X, = (a/F)I, are the normalized transmit-
ted intensities. Substitution of Eq. (8) into Eq.
(6) gives the following coupled nonlinear equa-
tions which relate the transmitted light intensi-
ties to those of incident ones:

X, =TY, 1+8 —2g cos 2 ko+2g, + 1 ++X +2 L

where we introduced the norma. lized incident light
intensities Y, = (o/F)(1+R)I„.

We consider, at first, the case where the inci-
dent light is linearly polarized, namely, Y, = Y
= Y. Equation (9) gives trivial solutions

X+=X =7Y,

where

~ =r(1+R' —2R cos[2(k, +~)L]) '

is the transmissivity of Fabry-Perot cavity for
weak-field limit X„X «1. As for the transmit-
ted field amplitudes and phases of both circularly
polarized fields, the solutions (10) are symmet-
ric, and the polarization of resultant transmitted
light remains linear. The nonlinearity of the
coupling between the two circularly polarized
lights may seem to play no role in the solutions
(10), but makes them unstable under some con-
ditions.

The stability of the solutions (10) can be ex-
amined by calculating the differential gain which
diverges at critical points where stable solutions
become unstable under a continuous change of pa-
rameters. ' Expanding the light intensities around
the solutions (10) as Y, = Y+y„X,=X+x„, and
substituting into Eq. (9), we obtain linearized
equations

x, + x =7(y, +y ),
x+ —x =g„(y, —y ),

(12)

(13)

q = (2R/7')&[X/(X +1)]sin[2(k + v)L]. (14)

where $~ = ~/(1 —
2q7 ) is the differential gain for

the difference between both light intensities, and

g is a parameter representing the strength of non-
linearity which is given by

!
At the critical point g =g„=1/2v, 4 diverges.
In the region g c'g y which includes the linear
case q=0, the solutions (10) are stable; hence in
the region g &g„ they are unstable.

By using Eqs. (11) and (14), the unstable condi-
tion is written down explicitly:

cos[2(k, + ~)L]+2~L sin[2(k, + ~)L] &
X 1+R'

1 o 2A

(15)

Consider the case where the inequality (15) is
satisfied in the limit X-~ by choosing adequate
values of k„z, L, and R. When the incident
light intensities are small enough, namely, X
=~Y 0, the i-nequality (15) is not satisfied be-
cause the left-hand side is less than unity, where-
as the right-hand side is greater than unity for
0~8 & 1. Below the critical value X„=v.Y„
which satisfies the equation corresponding to the
inequality (15), the symmetric solutions (10) are
stable. At the point Y= Y„symmetry-breaking
transition occurs and for Y& Y„only unsymmet-
ric solutions are stable.

To obtain the unsymmetric solutions we solved
Eq. (9) numerically. In Fig. 2 we have plotted X,
as a function of Y for 2k,L = —n/2+2aM (M is an
integer), 2qL = ~, R = 0.7. With respect to X,
the sa,me curves are obtained but the upper branch
corresponds to the lower one for X+, and vice
versa. Increasing the incident field intensity one
finds that, at the critical point Y„, X+ jumps to
the upper (lower) branch and X to the lower (up-
per) one. Above the point Y„the two stable
states, i.e. , cr+-dominant and o -dominant states,
are possible.

If, conversely, one decreases Y starting from
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FIG. 2. Hysteresis cycles of right-circularly polar-
ized transmitted light (X+) in the case of linearly polar-
ized incident light. The same curve is obtained for
left-circularly polarized transmitted light (X ) but
the upper gower) branch corresponds to the lower (up-
per) one for X+. At Y = Y, ) if X+ jumps to the upper
(lower) branch, X neccessarily jumps to the lower
(upper) one and 0+- (0 -) dominant state is established.

values Y& Y„, one sees that, at the other critical
point Y„, both I, and X jurnp back to the middle
branch which represents the symmetric solutions
(10). Thus in the region 1'„&Y&F„there exists
three stable solutions.

We also calculated solutions to Eq. (9) for gen-
eral cases Y+g Y . In Fig. 3 we have plotted crit-
ical points on the (Y+, Y' ) plane schematically.
The single-stable, bistable, and tristable regions
are indicated by the letters $, B, and T, respec-
tively. The curve in Fig. 3 just corresponds to a
section of the bifurcation set of the butterfly ca-
tastrophe cut by a hyperplane t =t, &0, u = 0 in
the control space (f,u, v, w). The system poten-
tial for the butterfly catastrophe is represented
as

V(x) = 1/6x'+ 1!4tx'+ 1/3ux'+ 1/2vx'+wx, (16)
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FIG. 3. The plot of the critical points on (Y+,Y )
plane. The single-stable, bistable, and tristable re-
gions are indicated by the letters S, B, and T, re-
spectively. If, by cha&&ing the inputs Y+ and Y, the
operating point crosses the curve from region T to
B or from B to 8, one of the stable solutions becomes
unstable and discontinuous change in outputs occurs.
The curve just corresponds to the bifurcation set of
the butterfly catastrophe (see Fig. 4).

trol variables move along the line zv = 0 in Fig. 3
as the incident light intensity is varied and meet
the two critical points at Y= Y„and Y=Y„. In
cases where incident light is circularly polarized,
control line passes through the regions S, 8,
(B ), and S, (S ). This corresponds to the ordi-
nary optical bistability, which has been studied
in detail by Agrawal and Carmichael' in the con-
text of a cusp catastrophe. In that case, the po-
tential V is represented by a quartic polynomial
including two control parameters.

Finally, we will estimate parameters for the

where x is the behavior variable and corresponds
to the difference X, -X in our case. In Fig. 4
we have sketched the steady-state surface in the
(v, w, x) space on which the derivative BV/Bx be-
comes zero, and the projection of the critical
points to the (v, w) plane. The upper (lower) part
of the surface corresponds to the o+- (o -) domi-
nant state and the intermediate part corresponds
to the compromised state.

For linearly polarized incident light, the con-

FIG. 4. Steady-state surface and bifurcation set for
butterfly catastrophe (t = to & 0, u = 0). The surface is
doubly folded and is divided into three stable sheets.
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experiment to realize the optical tristability in
which sodium vapor is used as a dispersive me-
dium. By filling He gas at pressure higher than
200 Torr as a buffer gas, y„ for D, line at 589.6
nm becomes larger than 2 6Hz, ' and we can ne-
glect hole burning effect and hyperfine pumping
especially for off-resonant light. Furthermore,
the buffer gas mixes the excited hyperfine and
Zeeman structure completely. Thus the situation
is very close to the model which me have used in
this paper. To satisfy the inequality (13), 21tl.
must be of the order of unity or larger, which
canbe achieved by choosing N-10" cm ', L, =10
cm, and ~b,

~

= 30y„. Then the absorption loss
2aL, is about 0.1 and will be neglected. The re-
quired optical power density of a cm dye laser is

of the order of 10 mW/mm'.
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Presented herein is a fully electromagnetic and relativistic stability analysis of the
Brillouin-flow equilibrium for magnetic insulation in planar geometry. Instability of
TM waves propagating in the direction of the sheared electron flow is found. This in-
stability occurs at short wavelengths at frequencies above the cyclotron and plasma fre-
quencies relevant to the system. It is found that relativistic effects can make the maxi-
mum instability growth rate normalized to the cyclotron frequency substantially lower
than the nonrelativistic value (O.G6) .

PACS numbers: 52.35.Py, 52.35.Hr, 52.75.-d

In current electron and light-ion-driven iner-
tial-confinement fusion schemes, transmission
lines capable of carrying power densities of the
order of 1 TW/cm' at electric field levels ex-
ceeding 5 MV/cm are required. ' These stresses,
far exceeding the standoff capabilities of conven-
tional insulators, necessitate the use of a mag-
netic field applied perpendicularly to the electric
field in a gap to prevent breakdown by electrons.
Known as magnetic insulation, this method of
breakdown inhibition also finds useful application
in the production of intense ion beams in vacuum
diodes, in re1ativistic magnetrons, and in multi-
ple-stage linear accelerators for charge-neutral-
ized ion beams. An examination of the linear
stability of the magnetically insulated state is of
interest in helping to determine, as a function of

system parameters, the length of transmission
line over which breakdown should be inhibited
(or the time duration of the insulation), the quali-
ty of an ion beam which passes through an insu-
lated electron layer, or the linear startup state
of a magnetron device. In this paper, some re-
sults of the first solution of R fully relativistic
and electromagnetic treatment of the stability of
the magnetically insulated Brillouin-, or lami-
nar-, flow state' are presented. As the name im-
plies, electrons emitted from a cathode into this
state are confined to a sheath near the cathode in
which they drift laminarly along equipotentials at
the local, self-consistent E &B drift velocity
(which is sheared monotonically).

It is found that TM waves propagating along the
direction of electron flow are unstable to pertur-
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