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Novel Analytic Solutions to General Four-Wave-Mixing Problems in a Raman Medium
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A new approach to the problem of steady-state plane-wave propagation in a Raman-ac-
tive medium has lead to general analytical solutions. Any arbitrary number of fields can
interact via both Raman and four-wave processes, but all fields must satisfy the phase-
matching condition. The solutions will be illustrated with a problem of current interest;
multiple first Stokes generation from a multiple-mode pump field.

PACS numbers: 42.65.Cq

In 1962 Armstrong ef al.! presented the equa-
tions governing plane-wave steady-state propaga-
tion in a nonlinear medium. They derived explic-
it analytic solutions for second- and third-har-
monic generation when the fields are assumed to
satisfy the phase-matching condition, and indicat-
ed the procedure to be followed for a higher-or-
der harmonic generation. In 1964 Platonenko and
Khokhlov? presented analytic solutions to the sim-
plest problem which can exist in a Raman medi-
um, pump conversion to first Stokes. Both these
analytic solutions contained the dynamics of the
entire process allowing complete depletion of the
initial pump fields and saturation of the generated
final product fields. Since that time no new ana-
lytic solutions have been found which can describe
pump depletion and/or saturation. For example,
Butylkin ef al.® in 1976 described the generation
of the first anti-Stokes field for which it is as-
sumed that there is no back reaction of the anti-
Stokes field on the pump-Stokes conversion pro-
cess. Even with this approximation these solu-
tions are very complicated Gauss hypergeometric
functions and indicate the prevailing philosophy
that analytic solutions are sufficiently difficult or
impossible to obtain and too complex to under-

stand, necessitating the direct use of a computer
to generate solutions.* In some cases where so-
lutions describing actual experimental conditions
are desired a computer may be the only path to a
solution. However, in many cases the existence
of analytic solutions would allow a valuable quali-
tative understanding of the physics of a process
even if the physics is only absolutely valid for
some more simplied model.

In this Letter, I would like to show that a new
approach to the original equations derived in 1962
for four-field interactions can lead to simple
physically transparent analytic solutions for a
very large group of problems when applied to a
Raman-active medium. Any arbitrary number of
fields can be considered as long as all fields are
phase matched and as long as each field has at
least one other corresponding field with a fre-
quency chosen to match exactly the two-photon
Raman transition, i.e., for example, a problem
with a pump, first-Stokes, second-Stokes, etc.
or several different pump fields and their corres-
ponding Stokes fields. I will also make some
standard approximations and assumptions:

(1) The two-photon Rabi frequency® is always
sufficiently small such that there is no molecular
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dynamics. (The equations will be written down
explicitly for the case where all molecules are in
their ground state.)

(2) The plane-wave monochromatic fields all
propagate on a common z axis and are linearly
polarized along the same x axis.

(3) All the fields’ frequencies are far off reso-
nance with intermediate-state energy levels such (

dA,/dz =Bw,d (4, - |4,..)A, +Zz;[Al*AH 1An-18XP(E AR, -y 12) =Aj Ay, A, exp(= iAkm',z)]},

where the terms independent of Ak are the usual
Raman terms and the remaining terms are the
four-wave—mixing terms.! The frequency w,, of
the mth field is related to the wave vector k&, of
the mth field in the standard way. The m,! field
pair phase mismatch Ak, ; is defined as

Akm,l=(km_'km+1)_ (kl—kl+1)' (2)
The Ith electric field is given by
Eyz,t)= Re{A,exp[i(k,z - wi)]}, (3)

where A, is the complex amplitude of the field as-
sumed here to be independent of time. The pa-
rameter g which is assumed here independent of
the fields’ frequencies is proportional to x ‘®.
The indexing in (1) is chosen such that if A, is a
pump field, thenA,,, (4,.,) is its corresponding
first Stokes (first anti-Stokes) field. Successive
higher (lower) indices refer to successively high-
er Stokes (anti-Stokes) fields. If additional inde-
pendent chains of fields are of interest in the
problem, then the indexing can be easily general-
ized by using two subscripts, where the first one
identifies the chain and the second identifies the
field. This multiple indexing will be necessary in
the example. The summation in (1) refers to a
sum over all other pairs of fields whose frequen-
cy difference is resonant with the Raman transi-
tion. It is important to realize that this sum in-
cludes pairs of fields which may not appear in a
common chain of higher Stokes or anti-Stokes
fields due to a single pump field, but exist due to
the possible initial presence of additional pump
fields. As we will see, energy is only trans-
ferred within individual chains, not between
chains, but the overall propagation dynamics is
determined by all fields. [We should notice here
that the Raman terms in (1) can be naturally in-
cluded in the four-wave—mixing terms by simply
allowing the sum to include all field pairs. The
exponential Ak, . terms in this case are identical-
1y unity.]

The equations of motion assuming all fields sat-

that all the frequency denominators in the third-
order susceptibility x®’, which describes the me-
dium’s response for steady-state propagation,
are approximately independent of the fields’ fre-
quencies.

The equations of motion generalized to include
any number of fields interacting via Raman and
four-wave interactions are

1)

isfy the phase-matching condition, Ak, ;=0, are
simply

dA,,/dz
=Bw,,.[(ElA,*Am)Am.1 - (Z,)A,AHL*)AW]- (4)

Since the quantity ), 4;4,,,* is now no longer di-
rectly coupled via the phase mismatch, I can cre-

‘ate its equation of motion from (4). One can easi-

ly discover that the phase, ¥, of this complex
variable is a constant of the motion where

fl)AzAm*E |Zl)AzAz+1*|e“"- (5)

After defining a new variable 6 where

de/dz= |EIA1A1+ 1*l ’ (6)

One can substitute (5) and (6) into (4) obtaining

dA,/dz =Bw,(d0/dz)(A,..e'? - A, .e?). (7)
By assuming all the fields depend on z only
through 6 and by making the transformation

[lm:Bme-imlb’ (8)
I find

dB,,/d0=Bw, B, ., ~B,) (92)

d6/dz =) B, B,, *. (9p)

i

Since d0/dz is real, the constant ¥ is specified by
the initial conditions such that at z =0 the imagi-
nary part of

ZI;BI B * =EA1A1+ re” W
1

is identically zero. The solutions will then evolve
such that this imaginary part is always zero.
Since I can arbitrarily choose 6(0)=0, I find that
0 remains a real variable.

Equations (9a) are simply first-order linear
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coupled differential equations which can be easily
solved by standard techniques for the fields B,, as
a function of 6.° The solutions for the B;’s are
simply sine and cosine functions making the qual-
itative dynamics transparent. However, the quan-
titative dynamics is complicated by the nonlinear
dependence of 6 on z. Each chain of higher Stokes
and anti-Stokes fields generated from a single
pump field forms a complete set of equations (9a)
which are not coupled to other chains through
equations (9a). Therefore, energy initially in a
particular pump field always remains in its chain
of higher Stokes and anti-Stokes fields, and is
never transferred between chains. Equation (9b),
however, takes the information in each chain and
combines this information to determine the over-
all dynamics of all chains through the variable 6.
For example, the simplest Raman process can
have its dynamics advanced more rapidly toward
conversion simply by the addition of other pump
fields. In particular, I will show that the gain for
each pump-Stokes conversion is now equal to the
sum of the gains for each individual conversion
process.” If we recall the original derivation of
(1),! we can recognize that the bilinear product of
fields in (9b) is essentially the two-photon Rabi
frequency for the transition, and it is for this
reason that the dynamics for all fields evolve
through the quantity 6. After obtaining the solu-
tions to (9a) we substitute them into (9b) which be-
comes a first-order nonlinear differential equa-~
tion for 0. Since the equation is first order, it
can be easily solved on the computer if necessary.
However, I will illustrate our general results
with a problem for which 6 can be evaluated ana-
lytically.

Let us consider a problem recently studied by
Trutna, Park, and Byer® where 2 modes of a sin-
gle pump field have a one-to-one correspondence
with 2 modes of a first-Stokes field. Since this
problem deals with multiple chains of field pairs,
we will generalize our previous notation such that
the ith chain’s pump and Stokes fields are labeled
A, and A;,, respectively. After specifying the in-
itial fields, A;;, ¥ is chosen such that the imagi-
nary part of Y ;A; A, *e” ¥ is zero. By using (8)
the initial conditions for the fields A;; can be
transferred into initial conditions for the con-
structed fields B;;. Since each chain only contains
two fields, we will for convenience and clarity
simply refer to the ith chain’s pump and Stokes
fields, B;, and B;,, by P; and S;, respectively,
eliminating the need for dual indexing. In this
case (9) is a set of k pairs of differential equa-
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tions with the solutions

w;S

P;(6)=P; cos(8Q,6) —-—s}'zfisin(ﬁﬂie) (10a)
S;(0)=S; cos(BQi9)+9—c§i sin(89;0), (10b)

where P; (S;) is the initial value of the ith pump
(Stokes) field with frequency w; (a;) such that

Q,= (w;a;)2 (11)

At this point we observe from (10) that the
pump-Stokes conversion proceeds in order of de-
creasing ; where the field pair with the largest
frequency product goes first. By making the ap-
proximations that the initial pump field is much
greater than the initial Stokes field (|P;|>|S;|) and
that the modes are spaced sufficiently close (1.1
29Q,/9;z0.9 for all ¢,7),° Eq. (9b) can be ex-
pressed as

de/dz ~(1/2) sin[2(8(Q)6 +(&))], (12)
where

Iiz(Qi/wi)lPiF, (13)

£,=35@S*+PxS)/Q/w)|PFl«1, (14)

I =i1i’ (15)

@ =21,/ (16)

O =D&/ an

Since the gain for the field amplitudes, g, can
be defined in the region 6 ~0 (z ~0) one can expand
(12) holding only the lowest term proportional to
0 and identify the gain as the coefficient of this
term as g is the rate of exponential growth for 6,
and therefore the fields (10):

k
g =I1p(Q) 232 ailPiIZ, (18)
1
The gain-for each pump-Stokes pair is the same
and equal to the sum of the gains for each individ-
ual pump-Stokes pair as if all the other fields
were absent.” Therefore, a single pump-Stokes
conversion can be substantially enhanced by the
simple presence of other pump modes.
Equation (12) can be integrated in closed form:

tan® = (£)es?, (19)
where
& =p(Q)0 +(£). (20)
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From Egs. (19) and (20) we see that & is initially
(¢) at 6=0 and grows until ® =7/2. If I define sat-
uration as the point (z,,,) where the pump modes
on the average are depleted to half their initial in-
tensity, then tan® ~1 giving

8Zsat= In(1/(£)).

The dynamics for this problem are now com-
plete. We know the order that the field mode
pairs saturate from (10), and in conjunction with
(21), we know the location of saturation for each
pair. Because of the approximation made in going
from (9b) to (12), I have simplified the solution to
this complex multimode problem such that it ap-
pears identical in form to the simple Raman prob-
lem.? If I restrict these multimode solutions to
represent a single pump-Stokes pair, then these
solutions are exact, and are in agreement with
Ref. 2 after using some trigonometric identities.

I have shown that steady-state plane-wave prop-
agation of phase-matched fields in a Raman medi-
um can be completely described by two equations.
The first, a set of first-order linear coupled
equations, are easily solved by standard meth-
ods; and the second, a first-order nonlinear equa-
tion, may be analytically integrated or easily
solved by using a computer. These equations ac-
count for both pump depletion and saturation. In
a longer paper, I will further illustrate the meth-
od by studying two additional problems: higher
Stokes generation and first anti-Stokes generation.
In addition, I will show that both a linear absorp-
tion and/or a mirror reflectivity (as one has in a
multiple-pass cell) can be included analytically in
the solutions with a very simple extension of the
method.
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