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Critical Behavior of Branched Polymers and the Lee-Yang Edge Singularity
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The exponents for large branched dilute polymers (which are also connected with the
exponents of the lattice animals) are related in D dimensions to the exponents of the I ee-
Yang edge singularity of the Ising model in D —2 dimensions. From the exact solution of
the Ising model in zero and one dimension, one gets the polymer exponents in two and
three dimensions, 6 (D = 2) = 1 and 0 (D = 3) = 2.
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In this Letter we study the statistics of the di-
lute limit of branched polymers in a good solvent.
This problem. belongs to the same universality
class as the statistics of lattice animals. ' The
two systems have the same critical exponents
which have been computed at first order in & = 8
—D (D is the space dimension) by Lubensky and
Isaacson' using a field-theory formalism.

It is well known that in order to study the statis-
tics of polymers, one can represent them as a
self-avoiding chain on a regular lattice. Occupied
bonds on the lattice represent monomers and con-
nected clusters of occupied bonds represent poly-
mers. In the limit of very dilute branched poly-
mers in a good solvent we ean neglect the influ-
ence which different polymers exercise on each
other and study the statistics of a single cluster.

The statistics of clusters is also studied in the
context of the percolation problem. A single con-
nected cluster is usually called a lattice animal
in the percolation terminology. The particular
properties of the polymers we will study are the
number g of possible configurations of a branched

polymer made from N monomers and the mean
end-to-end distance R. The behavior for large N
is expected to be the following':

v(D) = [o(d)+1]/d. (3)

In the case of the Ising model it is well known
from the Lee-Yang theorem that in the presence

The critical exponents 0 and v are universal but
the constant A. is not.

We show that the critical exponents 0 and v in D
dimensions are related to the critical exponent o

which controls the behavior of the magnetization
near the Lee-Yang edge singularity' in the Ising
model in the presence of an imaginary external
field in d =D —2 dimensions

8(D) = v(d)+ 2.

The Josephson scaling law (or modern field-
theory arguments) connects the singularity of the
free energy I with the singularity of the correla-
tion length g (I'-$ ~). We get
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5 ~ 79 , g(3) 10445
2 12 3888 81 1 259 712 (4)

In order to establish this connection between 0
and 0 we show that the effective Hamiltonian writ-
ten by I ubensky and Isaacson for the description
of the critical properties of the dilute branched
polymers is equivalent to the effective Hamilton-
ian for the Ising model in a quenched random ex-
ternal field. Then we use the equivalence —in the
critical regior. of a D-dimensional magnetic sys-
tem in a quenched random external field to a d
=D —2 magnetic system without random external
field.

Our method therefore relies entirely on renor-
malization-group ideas and field theory. We show
that the two problems, which look very different,
belong to the same universality class. The excel-
lent agreement we find for 8(2) where the numeri-
cal analysis is more accurate may be viewed as
another verification of renormalization-group
ideas.

of an external magnetic field IJ =B,+ia, the cor-
relation functions may be singular only for 0,
=Re(H) =0. Above the critical temperature T,
there are singularities only for H, = Im(H)w 0.
I et H, be the distance from the real axis of the
closest singularity, II =ALII, . Fisher' has studied

this singularity (which he calls the Lee-Yang edge
singularity) and has shown that in its neighbor-
hood the magnetization behaves like

m=M —Mo-(H —fH~)

where Mo is the magnetization at ia, .
While H, is not universal (it depends on the par-

ticular lattice, on the temperature, etc.), the ex-
ponent cr is universal like the ordinary critical ex-
ponents and has been computed by renormaliza-
tion-group methods' ~ ' in the e =d —6 expansion.

Because of the shift of the dimensionality ap-
pearing in Eqs. (2) and (3) from the exact solution
of the Ising model (in the presence of an external
field) in d =0 and d = 1 dimensions, we get the ex-
act values of 8 and v in the interesting case of
three dimensions: 8(3) =—', , v(3) =—', , and 8(2) = 1.
These values can be compared with the results of
"high-temperature expansions"' (enumeration of
the bond animals up to N = 9) 8(2) = 1.00+ 0.01 and

8(3)=1.55+ 0.05 and the result of Monte Carlo
simulations v(3) = 0.45+ 0.06 ' or v(3) =0.53+ 0.02.'
From the e'=6-d expansion for o, ' we also ob-
tain the first three terms in the e = 8- D expan-
sion for 0:

For the polymer problem the effective interac-
tion has been shown to be'

&= Z[(s„p) +~9'; l-(()Ep +&(Zv )'

+Hgq, , (5)

+ 4uQ+(((', 'q, (6)

For the computation of the critical exponents one
can take account of the leading infrared divergen-
ces only, neglecting power corrections. [This is
why we omitted the quartic term from Eq. (6).]

The propagator P,&
given by Eq. (6) is not diago-

nal in the fields but has the form

())+p (2) p ().) 6 /(p2+~2)ii t ii 7

S,(2) =11,,/[(p'+ rn')(p'+ m'+nuQ')],

where II,, =1, 0'=nII.
There are thus two propagators P"' and P"' and

two cubic vertices. Figure 1 represents three
Feynman diagrams contributing to the self-ener-

(a) (b)

(c)

FIG. 1. Feynman diagrams contributing to the self-
energy.

where i=1, . . ., n and the limitn-0 has to be tak-
en at the end. The field p, appearing in Eq. (5) is
to be identified with the field („of Ref. 1. The
other components (|)... j& 1, do not become criti-
cal at the phase transition and their presence can
be neglected for the computation of the critical
exponents, as was already noticed by the authors
of Ref. 1. It was also shown in Ref. 1 that for the
Hamiltonian (5) the first infrared singularities in
the one-loop diagram level appear for D = 8, con-
trary to naive expectations (D = 6). This result
holds only for n =0.

As usual, we first shift the field p,. (y, -y;+Q)
in order to eliminate the linear term in (5) and

we get the effective Hamiltonian

&=g [(&„y;)'+m'y -)y, ']+4zgq'gy, .y

872



VOLUME 46, NUMBER 14 PHYSICAL REVIEW LETTERS 6 APRIL 1981

gy. Continuous lines represent the P"' propaga-
tor and dashed lines represent the P"' propagator.
In the limit n - 0, P"' becomes more singular as
rn'-0 and has to be taken a maximum number of
times in order to get the most singular diagram.
[The diagram 1(b) is more singular than 1(a).]
The diagram 1(c) is proportional to n (because II'
=nil) and does not contribute to the limit n —0 al-
though more singular (one first takes n - 0 and
then m'- 0). This limits the number of P"' prop-
agators. An analysis similar to that of Houghton,
Reeve, and Wallace' can be carried out. One eas-
ily sees that only the Q,.p,.

' cubic vertex contrib-
utes to the most singular diagrams; the vertex
Q,. ;y, 'y, combined with P'~' giving additional n
factors is suppressed by the n-0 limit. If we
omit this term, the Hamiltonian (6) also describes
the y' theory with a quenched random imaginary
external field h (with a Gaussian distribution of
width uQ') in the replica, formalism' (h must be
imaginary because of the interaction of polymers
being repulsive, u & 0).

For real magnetic field it was proven in a per-
turbative framework' that, at the leading diver-
gence level, the correlation functions of the
quenched system in D dimensions are the same as
those of a magnetic system without the random
external field in dimension d =D —2. As we have
previously noted, "the leading infrared diagrams
correspond to the solution of the stochastic equa-
tion

-aq&+m'q+wq'=ih, (hg)h(y)) =5@-y), (8)

where hg) is a random magnetic field. By rede-
fining y as iy, we get

-b, ~p+m'y+ Hey'=h.

If we write this equation in a field-theory formal-
ism, a hidden supersymmetry appears which al-
lows us to prove the shift of dimensionality in a
compact nonperturbative way. " Therefore the
problem has been reduced to the computation of

the critical exponents of a y' interaction with an

imaginary coupling constant. Fisher' has proved
that the same interaction appears in the study of
the Lee-Yang edge singularity in the presence of
an imaginary magnetic field. In this case, one
finds that the magnetization has a branch point of
the form2

rpg
- (h —ho), o'= (d —2+q)/(d+2+g). (10)

1+0.5661'8=2.5 —0.0833m xi+0.3223 —0 0406 ' ' (ll)

from which we find, using Eq. (3), that v(2) = [dg/
dD]~, =0.61. If we a,dd the numerical results of
series expansion for the Ising model in two and

three dimensions, ' we get the estimates for 0 in
four and five dimensions shown in Table I. From
v, the Hausdorf dimension of the animals dz = 1/v
follows. Going from eight to three dimensions,
the Hausdorf dimension is reduced from 4 to 2.

We would like to thank T. C. Lubensky for use-
ful discussions. One of us (N.S.) would like to
thank the Theory Groups at Home and Frascati,
where this work was done, for their warm hospi-

Consequently, the free energy has a singularity
of the form (h —h, )'+'. The singularity of the free
energy of the d-dimensional Ising model is there-
fore the same as for the D-dimensional polymer
problem (D=d+2). From Eq. (1) it follows that
the polymer generating function Z(K) =Q„K(N)K"
has a singularity of the form (K'- 1/A. ) ' and this
proves Eq. (2).

The exponent o has been computed up to the
third order in the e expansion' and from this we
obtain Eq. (4). The Ising model with an external
field is soluble for d=0 (one site) and d=1. One
finds that o'(0) = —1 and o(1)=- 2, from which the
exact values for 8 and v in two and three dimen-
sions follow as listed in the introduction. Using
the ~ = 8- D expansion and the exact value of 0 for
D = 3, we find the following parametrization for 0:

TABLE I. Va1ues of the exponent 6 at different dimensions. 0& is the
value obtained in Ref. 3 from bond animal enumeration. L9~ is obtained
from the high-temperature series evaluation of 0 given in Ref. 2 through
Eq. (2); and 63 is given by Zq. (11).

0& 1 00+0 01 1 55+0 05 1 90+0 07 2 2+0 1 2 3+0 2 2 4+0 2

02 1 1.5 1.85 2.10 ~ ~ ~ ~ ~ ~

63 1.006 1.5 1.84 2.08 2.26 2.40
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