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The Landau-Ginzburg-Wilson model associated with the random alloy Fe~ „Co„C12 is
analyzed. It is observed that the model includes a coupling term which has thus far been
overlooked. Renormalization-group calculations in d =4 —& dimensions suggest that the
multicritical behavior of this system is not associated with the 'decoupled" fixed point
found in previous theories. This prediction is consistent with recent experiments. A

microscopic mechanism which generates this term is considered. It is suggested that
similar terms may appear in other quenched alloys.
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Phase diagrams and critical behavior of alloy
systems with competing order parameters have
been of considerable theoretical' ' and experi-
mental' "interest in recent years. Such sys-
tems are obtained by mixing two compounds which
exhibit two types of magnetic ordering. A simple
example is the one in which the two compounds
exhibit competing spin anisotropies. Such a sys-
tem may, in general, be described by an m-com-
ponent order parameter 5—= (S» ..., S ). The first
component of the mixture tends to align the first
m, spin components, B~~, while the other tends to

align the remaining (perpendicular) m, (=m —m, )
components, 5~. Mean-field analysis shows that
the phase diagram in the concentration-tempera-
ture plane shouM exhibit two critical lines associ-
ated with the transitions from the paramagnetic
phase to the two magnetically ordered phases.
These lines meet at a multicritical point"'
whose nature (whether a bicritical or a tetracriti-
cal point) depends on the details of the magnetic
interactions in the system. However, recent re-
normalization-group (RG) studies by Fishman and
Aharony' (FA) suggest that the phase diagram of

1981 The American Physical Society 845



VOLUME 46, NUMBER 1$ PHYSICAL REVIEW LETTERS $0 MARCH li&81

the alloy with random anisotropies should be tet-
racritical-like, irrespective of the numerical val-
ues of the various parameterS appearing in the
Landau-Ginzburg-Wilson (LGW) Hamiltonian. A.c-
cording to this study the critical behavior associ-
ated with the tetracritical point is governed by a
"decoupled" fixed point. At such a point each or-
der parameter undergoes its own transition even
when the two transitions occur simultaneously.
In order to test these and other theoretical pre-
dictions, several experimental studies on various
systems' "have been carried out. It has been
found that most alloys seem to exhibit a tetracrit-
ical (and not a bicritical) point, as predicted by
the theory I.n certain cases, however (such as
in'" the alloy Fe, „Co„C1,), it was observed that
the two competing order parameters are not de-
coupled near the multicritical point, in disagree-
ment with the FA theory.

In the present Letter I point out that one should
be careful in applying the results of the FA. theory
to specific physical systems. This theory as-
sumes that the two competing order parameters
are coupled via an energy-energy-like term )Siii'
x isiP in the LGW Hamiltonian. While this may
be the case for certain alloys, it need not be cor-
rect in general. In some cases other coupling
terms, which are allowed by the symmetry of the
problem, should be included in the LGW Hamil-
tonian. This may in turn change the nature of the
phase diagram. As an example I consider the
random alloy Fe, „Co„Cl» which is a simple sys-
tem with competing spin anisotropies. This al-

loy'" has been studied with use of susceptibility
measurements and neutron-diffraction techniques.
These studies indicate that the two competing or-
der parameters are not decoupled, in the vicinity
of the multicritical point. By analyzing the LGW
Hamiltonian associated with this system I find
that the model should include a coupling term
which is not included in the FA theory. The "de-
coupled" fixed point is found to be unstably, indi-
cating that the phase diagram is not necessarily
tetracritical-like. The phase diagram is dis-
cussed, and a microscopic mechanism which gen-
erates this new term is presented.

The pure compounds FeCl, and CoCl, are rhom-
bohedral, exhibiting an antiferromagnetic order-
ing in which ferromagnetic (001) planes are or-
dered antiferromagnetically. " In the case of
FeCl, the magnetic anisotropy favors an ordering
along the z axis. The system is thus described
by an m, =1 component order parameter, Sit=8,.
On the other hand, the magnetic anisotropy in
CoCl, favors an ordering in the x-y plane. The
order parameter in this case has m, = 2 compo-
nents, 5,= (S„,S,). In order to analyze the phase
diagram of the alloy, I first consider the LGW
Hamiltonian associated with the three-component
order parameter 5= (S„,s~,s,). The effect of ran-
domness is then taken into account' by consider-
ing n replicas of this'model and taking the limit
n-0. The symmetry group of FeCl, and CoCl, is
R%n(D„'). The most general LGW model associ-
ated with the order parameter S, which is invari-
ant under this symmetry group, is

e = fd'R& ,'r,S,2 ,'r,—(S„'+S,'—) ', f (VS„)'+ (—VS-,)'+ (VS,)'jv„S,'
—v„(S„'+S,')' —2 pv, '(S„'+S,') —wS, (S„'—Ssp, ')j.

In this Hamiltonian the x axis is defined such that
the x-s plane is a minor plane of the group R3m
(see Fig. 1). The coupling term w has been over-
looked in previous analyses of the phase diagram
of this system.

I now consider the phase diagram associated
with the model (1). Within the mean-field approx-
imation, it is found that the model exhibits two
ordered phases: one in which (S,)4 0 and gal=0,
and a mixed phase in which both thermodynamic
averages, (Sg and (S,), are nonzero. The model
does not exhibit a phase in which only gQ is non-
vanishing. The reason is that if (S„)becomes non-
zero it induces an ordering field, -w(S„)', which
is coupled linearly to S,. This field tilts the sub-
lattice magnetization out of the x-y plane. The
transition between the two ordered phases is ex-
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pected to be first order. This transition may be
studied by replacing S, by (S,) in the LGW model,

(1). The resulting m, = 2 component model, cor-
responding to the spin-flop (SF) transition, be-
longs to the universality class of the three-state
Potts model and the transition is expected to be
first order. " As a result, the phase diagram as-
sociated with the model (1) is bicritical-like.
Note that this conclusion is independent of the nu-
merica1. values of the other parameters, v, ,-, ap-
pearing in the Hamiltonian. '

In order to take into account the effect of fluctu-
ations, I study the renormalization-group equa-
tions associated with the model (1). This model
with m =0 has been studied by Nelson, Kosterlitz,
and Fisher, "who found that the multicritical
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point is described by the isotropic m= 3 fixed
point, v»*=v»*=v»*=a/4(m+8)K4, where K, is a
constant. Near fixed points with u *=0 the stabil-
ity exponent X„associated with the parameter m

is given by

X„=a[1- 24(v»*+ v»*)K~]. (2)

For the m = 3 isotropic fixed point one has A.„&0,
and the point is stable. One therefore expects
that the phase diagram associated with the (non-
random) model (1) should be bicritical-like. The
critical behavior of the bicritical point is gov-
erned by the isotropic fixed point, as in the case
se =0.

I now analyze the phase diagram of the random
alloy, and consider first the critical behavior of
the multicritical point. This is done by taking n
replicas of the model (1) and considering the lim-
its-0. This analysis has been carried out by
Fishman and Aharony for u =0. They find that the

!
"decoupled" fixed point is stable. At this fixed

FIG. 1. The crystallographic structure of a (001)
plane of CoC12 and FeC12, showing a magnetic site (0)
and its six nearest-neighbor sites (1-6). Mirror planes
are indicated by lines and two-fold axes by arrows. The
origin of the coordinate system is at (0).

point one has

1
&ac 0» P 22 4(m /8) K

Inserting (3) into (2), one finds that the m, =2 de-
coupled fixed point is unstable with respect to se,
and hence, all fixed points with xv*=0 are unsta-
ble. In order to analyze the multicritical behav-
ior, one has to study all fixed points with m*& 0.
This calculation has not been carried out. Exper-
imentally, the multicritical point seems to be
second order in nature. The critical behavior of
this point should therefore be governed by one of
the coupled to *4 0 fixed points. " In considering
the spin-flop transition, I note that most RG stud-
ies of systems with random impurities"4 are re-
stricted to the paramagnetic region. A detailed
study of the phase transitions occurring inside the
ordered phases has not been carried out so far.
However, one may make some qualitative state-
ments concerning these phase transitions, based
on general considerations. The longitudinal com-
ponent S, is expected to induce a random-ordering
field coupled to 5» as a result of random off-di-
agonal exchange terms. " The SF transition is
therefore described by the three-state Potts mod-
el in a random field. One would expect this trans-
ition to be similar to that of the Ising model in a
random field. It has recently been shown" that
this system does not exhibit long-range order for
d ~ 3. The transition is therefore expected to be
smeared in d = 3 dimensions.

In order to estimate the magnitude of the new
coupling term, I discuss a microscopic mecha-
nism which leads to such a term in the LGW mod-
el. In both CoCl, and FeC1» the ferromagnetic
intralayer exchange J is much larger than the an-
tiferromagnetic interlayer coupling" J', !Z'/J!
= 0.j.. For simplicity, I neglect the intralayer
coupling J', and consider a spin- —, model on a tri-
angular lattice. " Taking the most general near-
est-neighbor exchange allowed by the symmetry
group of the lattice 3m, one finds the following
Hamiltonian:

(4)H = —J,go (
o' ~ —J+ (o' ( o„~ +o'

~
o ~ ) +QH).

ey&

where the sums are over nearest-neighbor sites (ij) The las. t term P,&
is an off-diagonal exchange,

(

which for the pair (ij) =(01) (see Fig. 1) takes the form"

The corresponding term H&,
' for other pairs of nearest-neighbor spins is obtained from H„' by applying

the appropriate translations and rotations which transform the pair (01) onto (ij). Note that this term
may account for the random-ordering field induced by S, in the ordered phases. The LGW model as-
sociated with the Hamiltonian (4) and (5) may be obtained by the Hubbard transformation. " I find, after
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some algebra,

HiGw = -TQ+cq -~Q(Q„) + Pq) ++8) ) +O(P) ),
q

1
1

1
P, = J —1 Pgq 0'8-q+ J —1 P~q 9'~-q+Pyq Py-q

(6a)

Vy p g, 0'y-, lpJ ( )~J ( )L(Vg -~~ )Vgg~g-q- Vg

where p &, o. =x,y, ~ are the fields conjugate to
the spin components 0 „respectively, and q„,
and J,(q), l =1,2, are the Fourier components of

p„& and J,(r,~), respectively. The sump, is
over the wave vectors q in the first Brillouin
zone. The lattice constant, a, of the triangular
lattice is taken to be 1. In deriving the expres-
sion (6) I have assumed J', (J„J„and considered
only first-order terms in PJ,.

By examining the LGW model (6) one can ob-
serve that J, introduces a q-dependent off-diag-
onal quadratic term in the LGW Hamiltonian.
This term vanishes at q =0, in.agreement with
general symmetry considerations. The model (6)
does not include all the quartic terms appearing
in (1). However, by integrating out the y„, vari-
ables corresponding to wave vectors q lying in
the outer shell of the hexagonal Brillouin zone of
the lattice, all four couplings v„, v„, v„, and
zv are generated. Performing the integration, I
find that the leading contribution to so is third or-
der in J„and hence

~ - (p J3/p J,pJ,).' (7)

The exchange J, couples nearest-neighbor spins
in the x-y plane, and therefore it is expected to
be of the same order of magnitude as J, and J,.
Thus ~ is not negligible at high temperatures,
PZ, = 1 or PJ, =1. The coupling constant w van-
ishes at T =0. This is associated with the fact
that xv is induced by large-momentum fluctuating
fields, which may contribute only at nonzero
temperatures. At low temperatures I find se -T'.
It is clear that other microscopic mechanisms
which may generate the w term in (l) are possible
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