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Interaction between Closed-Shell Systems and Metal Surfaces

N. D. Lang
IBM Thomas J. watson Research Center, Yoxktomn Heights, Nese York 10598

(Received 6 November 1980)

The relationship between the van der Waals description of the binding of rare-gas atoms
to metal surfaces and the description using a local approximation for exchange-correlation
effects is discussed. The local-density treatment is shown to provide a good account of
recent data on atomic binding energy, dipole moment, and core-level binding-energy
shift. Charge rearrangement maps are used to analyze bond formation and to discuss
the validity of the image picture of core-hole screening.

PACS numbers: 68.45.Da, 79.60.Gs, 82.65.Jv, 82.65.Nz

This paper considers the interaction between
closed-shell systems, typified by rare-gas atoms,
and metal surfaces. These relatively weak inter-
actions are often discussed in terms of the van
der Waals mechanism. The hallmark of this
mechanism is the power-law dependence of the
interaction strength at large metal-adatom sepa-
rations, which owes its existence to the detach-
ment of the adatom electron from its exchange-
correlation hole (image) in the metal. Paradox-
ically, I demonstrate that a variety of experimen-
tal measurements on such systems are well de-
scribed by a theory —the density functional for-
malism with local-density approximation for ex-
change-correlation" —in which the electron and
its exchange-correlation hole are always attached
(and which as a result gives an interaction that
vanishes exponentially at large distances). Apart
from the fact that the local-density theory in-
cludes electrostatic and kinetic-energy terms
(and hence repulsive forces), it and the van der
Waals picture differ simply in the degree of at-
tachment envisioned between an electron and its
exchange-correlation hole. ' The essential point
is that for equilibrium rare-gas-metal distances,
the most important part of the valence-shell elec-
tron orbit (that nearest the metal) lies sufficient-
ly within the surface electron gas that it is most
correct to consider the electron to be attached to
the hole.

I mill discuss experimental data for adsorption
on simple metals, and therefore use the jellium
model for the metal (ions smeared into a uniform
positive background), which is an entirely ade-
quate approximation mhen treating adatoms that
are sufficiently large not to dig into the first lay-
er of metal atoms. The only parameter in this
model is the density p of the positive background,
expressed via r, (~m, '= p') The t-reatm. ent for
a single atom adsorbed on a semi-infinite sub-
strate is fully wave mechanical and self-consis-
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FIG. 1. Atomic binding energy vs distance d for Ar
atom on r = 3 substrate.

tent, and employs the method of Lang and Wil-
liams4 for solving the Hartree-like single-parti-
cle equations of the density-functional formalism.
These equations contain an effective exchange-
correlation potential that is a local potential,
and which in the local-density approximation is
taken to depend at each point only on the electron
density at that point. The only parameter spec-
ifying a particular adatom is its nuclear charge
Z; the wave functions for the core states are ob-
tained as part of the calculation.

I consider first the ability of the theory to give
the measured atomic binding energy. Figure 1
shows this binding energy as a function of metal-
adatom distance' d, for an Ar atom' adsorbed on
a substrate of r, = 3 bohrs. [This corresponds to
the mean free-electron (s-p) density of Ag, which
I will regard as sufficiently like a simple metal
in the region of the adatom to use the jellium
model for it. j d is measured from the positive-
background edge (which by construction is half an
interplanar spacing in front of the outermost lat-
tice plane of the crystal being modeled~). The
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atomic binding energy (at equilibrium) is seen to
be 0.07 eV; the experiments of Unguris' for Ar
on Ag(ill) at low coverages give 0.074+ 0.007 eV.

The electron density maps corresponding to dif-
ferent parts of the energy curve exhibit basic as-
pects of the bonding and, at the shortest distance,
the fundamental repulsive interaction responsible
for rare-gas scattering. Figure 2 shows density-
difference contours (contours of electron density
in metal-adatom system, minus superposition of
bare-metal and free-atom densities) for three
distances. At the largest distance, the contours
show a small polarization of the adatom toward
the metal; in the equilibrium region, the polariza-
tion is more pronounced, and the map shows a
resemblance to that for a covalent bond. (Note
that it is n'ot appropriate to attribute the binding
energy to this polarization; by perturbation the-
ory, the 1eading term in the binding energy in-
volves only the bare-metal-free-atom superposi-
tion. ) At the smallest distance, the interaction
is strongly repulsive because of Pauli exclusion.
The metal charge is pushed out of the way by the
closed-shell atom, and piles up in the metal just
outside the atom region.

The maps of Fig. 2 show a dipole moment in
such a direction as to decrease the substrate
work function. I now discuss the common mech-
anism underlying the formation of this moment in
the local-density and in the van der Waals' treat-
ments. ln the present calculation, the polariza-
tion arises from the fact that an electron in the
valence shell shows a preference for being on the
metal side of the adatom rather than the vacuum
side because, on the metal side, the exchange-
correlation hole that forms around it is more ef-

fective in lowering its energy (the hole is deeper
because of the higher electron density on this
side). ' Now recall that as an electron moves
from the bu1k of a metal out through the surface,
the exchange-correlation hole around it lags be-
hind, staying on the surface and becoming the
image charge. Furthermore, it is the time-de-
pendent interaction between the valence electron
and its image (and the image of the core) that
yields the van der %aals interaction. For an
atom far outside the surface, and thus in the van
der Waals regime, the valence electron shows a
preference for the metal side of the adatom be-
cause this keeps it closer to its own image (i.e.,
its exchange-correlation hole). Thus in both
cases, the permanent polarization of the atom
arises simply from the fact that a valence elec-
tron tries to derive the maximum energy benefit
from its exchange-correlation hole.

The van der Waals treatment yields an atomic
binding energy cc (d —d,~~)

' and a dipole moment
cc(d-d,~~') ', with Ocdv~, v, d,~~'s 1 bohr. " Now
these expressions arise, crudely speaking, from
averaging the image interaction mentioned above
over the valence-electron orbit, "which at its
nearest point is g I bohr from the image plane"
(the position where the classical image interac-
tion diverges). They thus involve an average of
a singular function over a region near the singu-
larity, at least insofar as we insist on using
these asymptotic forms at short distances. The
local-density approximation lacks the nonlocality
included in the image interaction, particularly
over the part of the orbit furthest from the metal
(where the interaction is small), but it becomes
a good approximation over just the part of the or-
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FIG. 2. Density-difference contours for Ar atom (r, =3 substrate). Maps are plotted in the plane normal to the
surface containing the adatom nucleus (+). Metal. is to the left; lighter vertical line is positive background edge.
Contours are not shown beyond the inscribed circle. Polarization in the core region is deleted because of its com-
plexity. Contour values plotted are + 0.000 065 and + 0.000 13 electron/bohr (solid line is positive, dashed line is
negative) .
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DECOMPOSITION OF EXTRA-ATOMIC SCREENING CHARGE
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FIG. 3. Den. sity-difference contour maps for Xe on

x~ =2 substrate. See caption of Fig. 2 for other details.

TABLE I. Calculated values: Xe on r~ = 2 substrate.
Measured values (Ref. 13): Xe on Al(111) substrate.
Second column gives rate of change of substrate work
function 4 with coverage fraction 0(6 = 0 limit). Dipole
moment is —(d4jd6}/47(N, where N is number of atoms
per unit area in full layer (0 = 1). Third column gives
coze-level binding energy shift 6 for 4d states.

gC/de)~e, (eV) 6 (eV)

bit for which the effect is largest and the image
description least appropriate.

I now compare the values calculated for the di-
pole moment and the core-level binding-energy
shift for Xe with data of Chia. ng, Kaindl, and East-
man" for adsorption on Al(111) (x,=2). An atomic
binding-energy curve would be computationally
extremely tedious to determine, ' but I estimate
an equilibrium distance d, - 5 bohrs, consistent
with three independent pieces of information. "
The first is that the covalent radius of Xe is 0.5
bohr larger than that for Ar (from data on solid
rare gases), suggesting from Fig. 1 that d, -5
bohrs for Xe. The second is the low-energy elec-
tron-diffraction data of Stoner et a/. "for Xe on
Ag(111) (not taken at low coverages however),
which gives a distance corresponding to d, =4.5
bohrs. The third is given by Fig. 3, which shows
density-difference contours for Xe at d =4 and
d = 5 bohrs, with the map for d = 5 bohrs resem-
bling the Ar map for equilibriuxn.

The second column of Table I gives a quantity
proportional to the dipole moment. The value
for d =5 bohrs agrees rather well with the meas-
ured value, consistent with the above argument
that d, - 5 bohrs. The third column gives the dif-

TOTAL CONTINUUM STATES DISCRETE STATES

(IMAGE-LIKE SUBSTRATE (AOATOM POLARIZATION)

POLARIZATION)

ference 6 in core-level binding energy between
free atom and adsorbed atom, "with good agree-
ment between calculated and measured values.
b. has two components, "6, (the chemical or ini-
tial-state shift) and A„(the relaxation or final-
state shift). 6, is not large: at d = 5 it is —0.3
eV (and thus b.„=1.9 eV). The simple image mod-
el" (with static reference plane as in Ref. 12)
yields 6„=2.0 eV for this distance, suggesting by
the agreement with the calculated value that this
model should be adequate for the rare-gas case
(in contrast to most other atoms"). Note that it
is the relatively large separation between core
orbitals and image plane that causes the asymp-
totic form of the image potential to be valid here.

I conclude now by showing that the present cal-
culation can be used to provide a simple under-
standing of the screening of the core hole that
leads to the relaxation shift. A map of extra-
atomic screening charge" is shown for Xe (y, = 4
substrate") at the left in Fig 4. Th.is map is not
immediately interpretable, but if it is decom-
posed into discrete and continuum-state contribu-
tions, "its structure becomes clear. The screen-
ing charge is then seen to consist of a rather
imagelike distribution, plus an outward polariza-
tion of the closed 5p-5s shell, presumably due

simply to a repulsion by the image distribution
(and which changes b.„by less than 0.1 eV).

I am delighted to acknowledge helpful conver-
sations about this material'with A. R. Williams,
M. B. Webb, L. W. Bruch, C. D. Gelatt, Jr. ,
M. Scheffler, E. Zaremba, and F. Forstmann.

FIG. 4. Contour map of extra-atomic screening charge
for Xe {4d core hole; d =4.5 bohrs; x~ =4). Contour
values + 0.0008 and +0.0016 electron/bohr3. See caption
of Fig. 2 for other details. Total is decomposed as
shown (see text and Ref. 19).

Calc. d = 4
Calc. d= 5
Expt.

—0.6
—0.54 + 0.04

1.8
1.6
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Phase Diagrams and Multicritical Points in Randomly Mixed Alloys
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The Landau-Ginzburg-Wilson model associated with the random alloy Fe~ „Co„C12 is
analyzed. It is observed that the model includes a coupling term which has thus far been
overlooked. Renormalization-group calculations in d =4 —& dimensions suggest that the
multicritical behavior of this system is not associated with the 'decoupled" fixed point
found in previous theories. This prediction is consistent with recent experiments. A

microscopic mechanism which generates this term is considered. It is suggested that
similar terms may appear in other quenched alloys.

PACS numbers: 64.60.Kw, 75.10.Jm, 75.50.Ee

Phase diagrams and critical behavior of alloy
systems with competing order parameters have
been of considerable theoretical' ' and experi-
mental' "interest in recent years. Such sys-
tems are obtained by mixing two compounds which
exhibit two types of magnetic ordering. A simple
example is the one in which the two compounds
exhibit competing spin anisotropies. Such a sys-
tem may, in general, be described by an m-com-
ponent order parameter 5—= (S» ..., S ). The first
component of the mixture tends to align the first
m, spin components, B~~, while the other tends to

align the remaining (perpendicular) m, (=m —m, )
components, 5~. Mean-field analysis shows that
the phase diagram in the concentration-tempera-
ture plane shouM exhibit two critical lines associ-
ated with the transitions from the paramagnetic
phase to the two magnetically ordered phases.
These lines meet at a multicritical point"'
whose nature (whether a bicritical or a tetracriti-
cal point) depends on the details of the magnetic
interactions in the system. However, recent re-
normalization-group (RG) studies by Fishman and
Aharony' (FA) suggest that the phase diagram of
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