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Three-Dimensional Instability of Finite-Amplitude Water Waves

J. W. MeLean, Y. C. Ma, D. U. Martin, P. G. Saffman, ' and H. C. Yuen
Fluid Mechanics DePartment, TRW Defense and SPace Systems GrouP, Redondo Beach, California 90278

(Received 26 September 1980)

Computations based on the full water-wave equations reveal that there are two distinct
types of instabilities for gravity waves of finite amplitude on deep water. One is pre-
dominantly two dimensional and is related to all the known results for special cases. The
other is predominantly three dimensional and becomes dominant when the wave steepness
is sufficiently large.

PACS numbers: 47.35.+i, 03.40.Kf, 92.10.Hm

The set of equations governing surface gravity
waves on irrotational, inviscid, incompressible
fluid of great depth is

V'y =0, — (z(q(x, y, t);
+ —'(Vy) +gz=0 q +V@ ~ Vq —y =0

on z = tl(x, y, t ), (2)

where g is the gravitational acceleration, y(x, y,
z, t) is the velocity potential, and rt(x, y, t) is the
free surface. These equations admit two-dimen-
sional (y -independent), steady, periodic solutions
in which g takes the form

x g a„exp[in(x—Ct)], (4)

where without loss of generality we have taken A.

=2m and g=1. The perturbation wave numbers p
and q are arbitrary real numbers. It is obvious
that (4) is an eigenvector of the infinitesimal per-
turbations to (3) with o the eigenvalue. Instability
corresponds to ImagO, since a occurs in complex
conjugate pairs.

The problem is to determine a and the corre-
sponding a„.This was accomplished numerically
by truncating the infinite sum in (4) to 2N+1

rt = rj, =g A„cos[2nn(x-Ct)/X],
0

where the Fourier coefficients A„and the wave
speed C are functions of the wave steepness h/A. ,
where k is the peak-to-trough height and ~ the
wavelength. The first few terms in the expansion
in powers of h/A. were calculated by Stokes and

Rayleigh. ' Recent calculations by various authors
have given g, up to the limiting wave steepness
of h/X =0.141.'

We consider the stability of these two-dimen-
sional steady waves to arbitrary infinitesimal
three-dimensional perturbations in which the
free-surface disturbance is of the form

q'=exp(i [p(x-Ct) +qy —vt]]

modes, substituting g, + g' and the corresponding
y, + p ' into (2), and satisfying the boundary con-
ditions at 2N+1 points. The resulting homogene-
ous linear system of order 4N+2 was solved as
an eigenvalue problem for a by standard methods.
The accuracy of the solutions was improved by
Newton's method when necessary. For small
values of h/A. (less than 0.1), N = 20 sufficed to
give a reliably to three significant figures. As
h/A. was increased, larger values of N were
needed, and for the steepest wave studied (h/A.
=0.131), N =50 was used.

Two distinct regions of instability were identi-
fied, denoted as I and II. Plots of instability
regions in the p-q plane for various values of
h jh, are shown in Fig. 1.

The eigenvectors corresponding to instability
region I have dominant components n =1 and
n = —1 for h/X -0. For very small values of h/A. ,
the instability band is very narrow and lies near
the curve defined by

p —1 + [ q' + (p —1)'] '~'

=p+1-[q'+(p+1)']'l'. (5)

The band is symmetrical about q=0 and p=0
(with a„-a„).Near the origin, the instability
bandwidth along the p axis is proportional to h/A. .
Near p =~4 the bandwidth is of order (h/g)'.
For sufficiently large values of h/A. , the band
diminishes in size. At h/A. ~0.108, the instability
band detaches from the origin (p = q= 0), indicat-
ing that the system is no longer unstable to in-
finitely long wave perturbations. At h jh = 0.124,
this type of instability disappears.

The eigenveetors corresponding to instability
region II have dominant components n =1 and n
= -2 for h/A, -O. For small values of h/A, , the
instability band lies near the curve

p —2+[q'+(p —2)'] 't'

=p+1 —[q'+(p +1)'] 't'.

The band is symmetrical about q = 0 and p = 0.5
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FIG. 1. Instability regions in p-q plane for various values of wave steepness: (a) h/&= 0.032; (b) h/&= 0.064;
(o) h/A. = 0.096; (d) h/)I. = 0.111; (e) h/A= 0.127; and (f) h/A, = 0.131. Shaded regions denote instability. Points of
maximum instability are marked by dots, with the approximate growth rates shown.

(with a„-a„).The bandwidth along the p axis is
proportional to (h/A) . Unlike in region I, this
instability band continues to grow with increasing
h/A. , being widest at p =0.5. At h/X=0. 13, the
instability region touches the p axis at p =0.5,
indicating the onset of two-dimensional instabil-
ity of this type.

The maximum growth rate of the type-I insta-
bility is proportional to (h/A)' for small h/A. . For
each value of h/A. , the maximum instability
occurs when @=0, so that type-I instability is
predominantly two dimensional. The maximum
growth rate of the type-II instability is of order

(h/A. )'. The maximum instability occurs at p =0.5

and q &0. Thus, type-II instability is predom-
inantly three dimensional.

For values of h/A. ~ 0.09, type-I instability has
the larger maximum growth rate. For larger
values of h/A, , type-II instability dominates. As
discussed above, only the type-II instability
exists for sufficiently large h/A. . This change-
over from two-dimensional to three-dimensional
may be partly responsible for the observation
that relatively calm ocean surfaces exhibit two-
dimensional features, whereas a choppy sea is
strongly three dimensional.
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The two instability regions discussed above ap-
pear to be the first members of two classes of
instabilities. The first class of instability occurs
(for small h/A) near curves given by

p —m+ [q'+(p —m)']'~'

=p+m —[q'+(p+m)'] '~', (7)

where m is a positive integer. Equation (5), cor-
responding to the type-I instability, is the case
m =1. This class of instability has eigenvectors
with dominant components n = + m (for small h/A. ).
The instability regions are symmetrical about q
=0 and p =0. We denote the entire family of in-
stabilities of this type as class-I instabilities.

The second class of instabilities lies near
curves given by

p -(m+1) +(q'+[p —(m+I)]'}'~'

=p + m —[q'+(p +m)'] '~', (8)
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FIQ. 2. Hesonance curves in P-q plane for class-I
{solid lines) and class-II (dashed lines) instabilities
thriven by Eqs. {7) and (8)] for m = 1 and m = 2.

so that Eq. (6), corresponding to the type-II in-
stability, is the case m =1. The associated eigen-
vectors have dominant components with n =m and
n = -(m+1). The instability regions are symmet-
rical about q = 0 and p = 0.5. We denote this sec-
ond family of instabilities as class-II instabilities
(see Fig. 2).

Equations (7) and (8) express the condition that
the eigenvalue problem is degenerate as h/A. —0,
which produces a band of parametric instability.
Physically, this can be interpreted as a reso-
nance between the modes m and -m, and m and
-(m+1), respectively, which have equal frequen-
cies as h/A, -0 when (7) and (8) are satisfied. '

For large values of m, the values of p and q
are large and the eigenvectors represent short

waves on a nonuniform flow (the undisturbed
Stokes wave). It is noteworthy that the instability
is not recovered by a standard WKB-type method.

For m =1, the instability bandwidth and maxi-
mum growth rate are proportional to powers of
h/A. . It is expected that these powers increase
with increasing m, so that the higher-m instabil-
ities are hardly detectable when h /A. is small.
However, the importance of these instabilities
for large values of h/A, cannot be a priori deter-
mined.

The possibility of further instability regions
which do not exist for small h /A, also cannot be
excluded.

We now discuss the relationship of these in-
stabilities to known results. We first consider
class I. Phillips's figure 8 resonant diagram4
is precisely the curve given by (5), i.e., the first
member (m =1) of the class-I instability. For
small but nonzero values of h/A. , the Phillips dia-
gram develops into a narrow band of instability.
In the region )p) «1, (q)«1, it corresponds to
the sideband instability obtainable from the three-
dimensional nonlinear Schrodinger equation. ' The
two-dimensional special case (q =0, ~p ~

«1) is
the so-called Benjamin-Feir instability. For
larger values of h jA, , or for regions where ~p~

«1,
~ q~ «1 no longer hold, the instability band

can be obtained from a better approximation:
the Zakharov equation. ' The Zakharov equation
loses quantitative accuracy when h/A, exceeds
about 0.06, although it qualitatively reproduces
the eventual detachment of the instability region
from p = q = 0' and the subsequent disappearance
of the type-I instability. ' The special case of q
=0 and p rational has been studied numerically
by Longuet-Higgins using the full equations. '

The class-II instability can be related to a high-
order parametric instability, whose possible
existence was pointed out by Zakharov. ' Recent-
ly, Hasselmann" gave a plausibility argument for
its presence in the special case of q=0.

The instability diagrams show that the three-
dimensional instability band broadens along the
line p =0.5 as h/A, increases. The band touches
the p axis at p =0.5 when h/A, ~0.13. This two-
dimensional instability of steep waves was first
discovered by Longuet-Higgins. " Maximum in-
stability for class II occurs for p = 0.5, q &0, and
is fully three dimensional for all our calculated
cases.

For P =0.5, the instability is co-propagating
with the unperturbed wave (i.e., Reo=0). This
implies that a new class of steady three-dimen-
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sional waves will bifurcate from the point of sta-
bility exchange with p =0.5.' We suggest that this
three-dimensional instability and bifurcation is
responsible for the striking three-dimensional
patterns observed by Su" in an experiment.

The results here show that gravity waves are
unstable to short-wave perturbations. In particu-
lar, there exist narrow bands of wave number p
for which two-dimensional, short-wave distur-
bances are unstable. There is no contradiction
with I.onguet-Higgins's" results that two-dimen-
sional superharmonic perturbations are stable
for h/A. (0.139, as he only calculated pure or low-
order rational harmonics which lie outside the
narrow instability bands.
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