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The mean-field equations of the Ising model with competing interactions are studied
by means of an iteration procedure. It is found that the phase diagram consists of re-
gimes with stochastic behavior, indicating a complete “devil’s staircase” with pinned
configurations only, and analytic regimes where commensurate pinned phases are sepa-
rated by incommensurate phases with Goldstone modes.
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The anisotropic Ising model with competing
nearest-neighbor interaction, J,>0, and next-
nearest-neighbor interaction, J,<0, in one par-
ticular direction only was originally constructed
by Elliott' in order to describe modulated struc-
tures in rare-earth systems. Recently the inter-
est in the model was renewed when von Boehm
and Bak®"* investigated it numerically by solving
the mean-field equations approximately and ana-
lytically by mapping the model onto a continuum
soliton theory describing commensurate-incom-
mensurate transitions. An infinity of commensu-
rate phases was found. This discovery was sub-
sequently confirmed at low temperatures by Vil-
lain and Gordon® using a different phenomenologi-
cal mean-field theory, and by Fisher and Selke®
using a low-temperature expansion technique. No
incommensurate phases with Goldstone modes
(phasons) were found, but all phases are “pinned”
to the lattice.

In this paper, the model is studied by means of
a recursion procedure which does not involve the
continuum approximation. It will be shown that
the phase diagram consists of chaotic regimes
where all states are pinned, and “analytic” re-

gimes including incommensurate phases with slid-
ing modes.

Within the mean-field theory the free energy
can be written3:*

s
F=XJ,;MM;-TY |, tanh™*odo. (1)
ij i

Here, J;; is the interaction between spins at sites
7 and j, and M; is the thermodynamical average

of the spin at site ¢, The previous calculations?"®
showed that a large fraction of the phase diagram
is formed by the “++— — ++’ phase consisting of
two “up” layers followed by two “down” layers

and so on. This phase has a period of four lattice
units and a wave vector ¢ =27/4. To study the sta-
bility of the phase diagram in its neighborhood I
introduce the discrete phases ¢;:

M; =A cos(p; +2mi/4). (2)

As usual, one assumes that A is a constant in
the region of interest,” but ¢; may depend on the
coordinate ¢ along the direction with competing
interactions. A constant ¢(=24n) describes the
q =27/4 commensurate phase. ¢; =47 is a
phase with ¢ =37(1 +g). The amplitude, A, can be
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calculated by solving the mean-field equations in
the commensurate phase:

(4J, - 2J,)A =T tanh™'A. 3)

Here J, is the interaction between spins perpen-
dicular to the anisotropy direction. Now (2) is
inserted into (1), and F is expanded in terms of
the phase differences (¢; —¢;.,). Terms up to
second order are kept. Apart from a constant,
the free energy becomes

F/N? =220, 23 3(¢is1 = 9s =P +aV (9], (4)

where N is the length of the system, 6 =J,/4J,,
V(p:)
A Cosp;

sing;
=3[, tanh"lodo +j: “tanh™lodd], (5)

and
a=T/2A%,.

V(p;) is an effective potential for the phase at
layer ;. The shape of the potential depends on T
and J, through A, Near T, V(¢;) may be expand-
edin A:

V(p;)=2 A%/96 cos(4¢;) (6)

and (4) becomes identical to the Frenkel-Kontoro-
wa model used to discuss commensurate-incom-
mensurate transitions.” When A increases, as
the temperature is lowered, the shape deviates
from the form (6). The configurations minimizing
F are found among the solutions to an infinity of
difference equations

(@isy = @) = (@i = @i-y) +aV'(@;) =0. (7)

The Egs. (7) may be considered as recursion
relations or “mappings” of the quantities ¢; and

Wi=Qi=Piy

Wisy TW; -aV'(¢;) (8)

Pisy @ TW;.

Solutions to (8) can be generated by starting at
one point (¢,,w,) in (¢,w) space and iterating the
equations. Despite its simplicity, (8) cannot be
solved analytically (which can be proven) but va-
rious mathematical theorems give information on
the nature of the solutions. In the continuum ap-
proximation the first two terms in (7) are re-
placed by the second derivative and the problem
becomes solvable. My goal, however, is to de-
scribe the effects of the lattice.

Figure 1 shows the results of computer itera-
tions of (8) for A =0.71 and (1) ¢ =3.86 and (2) a
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FIG. 1. Solutions to difference equations (7). (a)a
= 3.68 corresponding approximately to J, =J;, T =7.36
X Jy. At the CI transition J, ~~2J;. (b) a=8 cor-
responding to J, = 0.341J,, T =3J,, J,~—0.375J,
at the CI transition.

=8. The diagrams show w; as a function of
¢;(modzm). Points (0, w,), —0.35<w, <0.35 and
(¢4,0), ¥7<¢,<3n1/4 were generally chosen as
starting points, and typically 2000 iterations
were performed.
Case (1) corresponds to a “relatively” weak po-
tential (temperature not too far from T, and J,
~ —2J,). Several types of trajectories are seen.
(i) Fixed point (FP) at ¢; =%w, w; =0, This is
the commensurate (C) phase. There is another
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FP at (4w,0) describing the phase +0 -0+ which
maximizes F.

(ii) Smooth invariant trajectories. Starting at
($7, w,>0.01) the points eventually form continu-
ous curves, despite the discreteness of the steps.
These curves describe incommensurate (I) states
with

@i =(37gi +a) + f(§7qi + a),
fx) =f(x+§m),

where f is a unique function, and « is an arbi-
trary phase. The existence of such curves can
be proven by means of the Kolmagorov, Arnold,
Moser theorem.®:® A diffraction experiment on
the system would produce Bragg satellites at ¢
=2m(1+g). Some of the curves appear to be
dashed lines. This is because, for illustration,
the iterations were stopped before the curves
were traced out. An infinitesimal shift of «
shifts the starting point, but the curve (and the
energy) remain invariant. This is the Goldstone
mode (phason) of the I phase. A gapless sliding
mode exists despite the discreteness of the Ising
model! In the continuum version of (7), all the
solutions are of the form (9). At large values of
w,, w; does not fluctuate much, indicating a rela-
tively small content of higher harmonics. When
w, becomes smaller (but still >0,01) the trajec-
tories describe a soliton lattice with a large den-
sity of points near (47,0) and a smaller density
near the phase kinks at (47, ~0.3). The width of
the solitons is ~5 in this case. The closed orbits
around the unphysical FP are energetically un-
favorable commensurate phases with an incom-
mensurate modulation.

(iii) Chaotic trajectories. When the initial con-
figuration is chosen sufficiently close to (4, 0)
the trajectories change in a dramatic way. The
points do not form a curve but tend to fill out
completely a finite (but small) area in the phase
space. This area is mainly concentrated near
(47,0), but the irregular grainy curve connecting
this point with the equivalent area around 37/4
belongs to this “chaotic” trajectory. The recur-
sion relations act as an information source' in a
way very similar to a random number generator
in a digital computer. An infinitesimal shift of
the (w,, ¢,) changes the flow dramatically. Physi-
cally, these solutions describe a random combi-
nation of pinned solitons and antisolitons. Depend-
ing on the sign of 0 eitker a series of solitons or
antisolitons will be favored. The solutions in
this area eventually form the devil’s staircase

(9)

0.3r
-g 114
0.2 115
i 2511
Z 116
— 17
-2 -
0.1 9= -
! .0=8
a=3.68: :
chaotic+: :
O 1 : 1 h 1 1 J
0 01 0.2 03 04 & 05

FIG. 2. Wave vector vs 6= (J;/4J,) near the CI
transition.

with no commensurate phases as discussed in
Refs. 2 and 8. The solutions found by Villain and
Gordon® and by Fisher and Selke® can all be clas-
sified as pinned domain-wall states. There is no
Goldstone mode in this phase, but an infinity of
metastable states. A diffraction experiment
would show smeared peaks corresponding to some
random (metastable) distribution of walls.

Among all these solutions the stable one is the
one with lowest energy at a given value of 5(=J1/
4J,). Figure 2 shows the wave vector g defined
by Eq. (9) as a function of 6. At large 6 the I
phase is stable. When the distance between soli-
tons (at decreasing 6) becomes sufficiently large
the repulsive interaction between the solitons can-
not overcome the pinning to the lattice, and the
soliton lattice breaks up to form the chaotic
phase. The critical distance between solitons in
case (1) is ~ 18.2 corresponding to a misfit of
~5.5% (q/2m =0,236). At some point, the natural
misfit 6 becomes small enough to stabilize the C
phase (the soliton energy becomes positive).

In summary, the effect of discreteness of (7) is
to squeeze in a relatively narrow chaotic regime
between the C and I phases. Apart from this, the
continuum approach is qualitatively and quantita-
tively correct.

In case (2) [Fig. 1(b)] the value of the potential
is increased. This corresponds to lowering the
temperature, or increasing the perpendicular
coupling J,, while keeping A constant. The width
of the chaotic regime increases dramatically.
However, invariant trajectories describing incom-
mensurate phases still exist, The maximum dis-
tance between solitons in the unpinned I phase is
only 5.7, yielding a misfit of ~ 17.7% and q/27
=~0,206. This trajectory (which borders the

793



VOLUME 46, NUMBER 13

PHYSICAL REVIEW LETTERS

30 MARCH 1981

chaotic regime) passes through the point (¢, w)
~(47,0.17) and, as can be seen, follows a quite
complicated orbit in (¢, w) space. At larger
values of w; the behavior becomes more regular,
Additional features become evident. In the
chaotic regime there are bubbles with no chaotic
points inside. They describe higher-order com-
mensurate phases, which eventually form the
main steps of the devil’s staircase. Also, in the
incommensurate regime there are bubbles be-

tween the invariant trajectories describing higher-

order commensurate phases. For example, be-
tween the trajectories through (,0.28) and (4,
0.35) there are four bubbles giving a C phase
with ¢/27 =4(1-%) =%. The C phase is given by
a limit cycle sequence between (0.2867,0.295)
and three other points. For w, closer to the %

phase a commensurate phase indicated by a series

of five bubbles is evident, and ¢/2r =3(1-%)=4.

This (and the other) high-order C phases are sur-

rounded by narrow chaotic phases of their own.
Consider the sequence of points generated start-
ing from (%47,0.21). The behavior is clearly
chaotic: Sometimes the points are below the bub-
ble, sometimes they are above. In fact, the re-
gime around (0,287, 0.2) is a miniature reproduc-
tion of Fig. 1(a)! The incommensurate phase is
thus penetrated by high-order commensurate
phases (as is expected?*'5), each surrounded by
its own chaotic phase. This forms the incomplete
devil’s staircase. It is never possible to go from
an incommensurate phase to a commensurate
phase without passing a chaotic phase. For very

large values of a (= 12) no incommensurate phases

exist, and the staircase is believed to be every-
where complete.®

Although the results presented here have been
derived for a specific model, the picture which
emerges may well apply to many different sys-
tems in statistical mechanics, magnetism, and
other areas of solid state physics where modu-
lated structures occur. In the magnetic system
CeSb several commensurate phases have been
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observed,?* ! and no “smooth” behavior exists.
This would correspond to the chaotic regime in
Fig. 1 with pinned phases only. In the epitaxial
system, krypton on graphite, a destruction of the
Bragg peak has been observed in the “incommen-
surate” phase near the C phase.'? This could in-
dicate a chaotic phase, existing even at the low-
est temperatures.
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