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Monte Carlo Calculation of the Thermodynamic Properties of a Quantum
Model: A One-Dimensional Fermion Lattice Model
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Starting from a genuine discrete version of the Feynman path-integral representation
for the partition function, calculations have been made of the energy, specific heat, and
the static density-density correlation functions for a one-dimensional lattice model at
nonzero temperatures. A Monte Carlo technique has been used to calculate the tempera-
ture-dependent properties. The results are compared with exact calculations for short
chains, the Hartree-Fock approximation, and a classical model.

H= Ho+H, ; (la)

PACS numbers: 05.30.Pk, 05.30.Ch

Starting from the generalized Trotter formula,
Suzuki' proved that the partition function of a @-
dimensional quantum spin model is equivalent to
a partition function of a (d+ 1)-dimensional Ising
model. A similar correspondence has been es-
tablished for other quantum models. ' Because of
this equivalence between a d-dimensional quantum
model and a (d+1)-dimensional classical model,
the quantum system can be studied by performing
Monte Carlo calculations on the classical model. '

In this paper we present results of such a cal-
culation for the one-dimensional (1D) spinless
fermion lattice model described by the Hamil-
tonian

particles is denoted by N. It is well known that
(1) is equivalent to the spin--, Ising-Heisenberg
chain if M-~. 4 For a half-filled band M=2N,
the ground state of (1) is the same as the ground
state of the antiferromagnet for which quantum
effects are known to be very important. As point-
ed out by Hubbard, ' the model (1) might be used
to describe some of the properties of the tetra-
cyanoquinodimethane salts if more distant inter-
actions are taken into account. These effects are
easily included in the scheme presented below.

We now present the essential steps of our cal-
culation. We also start from the Trotter formu-
la' but our approach differs substantially from
that of Suzuki, Miyashita, and Kuroda. ' Because
H, and H, are bounded, we have

N

Ho= —t ~ Cl Cl+1+Cl+1 Cl&
l= 1

Z—=Tre ~~=limZ (2a)

Cl = Cl+u~ (1b) Z = Tr[exp(- PH, /m) exp(- PH, /m)] . (2b)
N N

H, = v ~ c, c,cl+, c,+, = v~n, n, +, ~

l=1 l=1
(1c)

The operator c, creates a fermion at a site l, n,
is the number operator, t is the energy associat-
ed with the motion of the particles, and v is the
strength of the interaction. The total number of

The basic idea is to calculate the approximant
Z and the corresponding thermodynamic quanti-
ties and to study the convergence of the results
as a function of m. Note that' Z,p ~ Z2p+1~ Z and
Z =Z for t=O, v0 or for tg0, v=O.

By using the fact that H, can be diagonalized by
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Fourier transformation and introducing complete sets of states, a straightforward calculation yields

Z e2 28)btg P p({X0)]. {P0)] ) sgn(P (1) ~ P(m) ) (Sa)

m

p({X,")j, {P")])=g g J {2tp/m, X,"'-X
&, + )"'")exp[(- pv/m)5u v) &, )), „),],j=1 l= 1

l P& (X -Z m g) 1 (Sb)

J(y, X) =M ' Q cos(2)TAX/M) exp[-2y sin2(k))/M)]. (Sc)

The position of the (I, j)th particle in the 2D mod-
el is given byXl +l +1+M ', Pl"' i»
permutation operator acting on the particle label
I, and the superscript ( j) labels the distance
along the new "Trotter" direction. By a change
of variables, (3) can be written as a, genuine dis-
crete version of Feynman's path-integral repre-
sentation' for the partition function. In Eq. (3),
permutation operators appear in a more sym-
metric form which is more convenient for numer-
ical calculations. The result (3) is easily ex-
tended to the case of more-distant interactions
because we have written (3) in the representation
that diagonalizes B,.

For short chains (M &8), the summation in Eq.
(3) can be done exactly and we have also calcu-
lated Z, using the formulation of Suzuki, Mi-

~ yashita, and Kuroda. ' Comparing these results
with those obtained from diagonalizing the Hamil-
tonian, we concluded that Eq. (3) is a much better
approximant than the one used in Ref. 3. For
long chains, we calculate the thermodynamic
properties by means of importance sampling.

Obviously, a Monte Carlo calculation for a giv-
en permutation is feasible' but the standard Monte
Carlo method for the calculation of Z breaks
down because it requires all contributions to the
partition function to be positive in order to de-
fine a transition probability. This problem is
solved by defining the following average of a
quantity A by ((A)) = Tr(pA)/Trp where Tr de-
notes the sum over all possible configurations
and permutations.

Using E = —Z ' &Z /&P, we find that the mth
approximant for the energy is given by

E =- ((sgn(P) P P {(t/m)[ J(2tP/m, F,&') —I)+J'(2tP/m, F,1')+1)]
J =1 l=l

x [J(2tj3/m, I',1' ))] ' —(v/m) 5&+,{i) x (i )&(~ „),)))/((sgn(P))),

where P =P ' ~ ~ P and

y (~ ) x (~ ) x (~ +~)
~ (y +i) ~

l

(4)

A similar expression is easily obtained for the specific heat. The density-density correlation function
is given by

m e N(;,,„)=(( g (P) ' QM ' Q Q &,&')-„,, & ), „(( g (P))).
J =1 l =1 l =1

This simple but essential trick allows us to calcu-
late the relevant thermodynamic properties be-
cause p/Trp is positive and Monte Carlo tech-
niques can be used to estimate the quantities be-
tween double brackets.

It is interesting to note that there is an exact
relation between this fermion model and a boson
model with a hard-core interaction. In second-
order perturbation theory, this boson model is
equivalent to the large-U limit of the extended
Hubbard model. "

The results presented here have been obtained
by averaging data of more than four statistically

independent runs of at least 10' Monte Carlo steps
per particle each. In each run more than the
first 10' Monte Carlo steps per particle were dis-
carded for the sampling procedure. In practice,
the maximum value of m is limited, not because
of memory requirements, but because the accep-
tance rate decreases with decreasing P/m. Note
also that the statistical errors are proportional
to m-'~'.

We now discuss the numerical results for t =1,
v =2, N =M/2, and M=32. For this particular
choice of parameters, quantum effects are very
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TABLE I. The energy and specific heat for the fermion (boson) model
for P = 2 as a function of ~. For comparison, the results obtained by the
Hartree-Fock (HF) approximation, the classical limit (CL) t = 0, and the
exact N = 4, M = 8 diagonalization are also given.

8
16
20
24
HF
CL

EZ (M=8)

—0.38 + 0.04 (- 0.485 + 0.002)
—0.37+ 0.03 (- 0.421+ 0.003)
—0.36+ 0.03. (- 0.411+0.002)
—0.35+ 0.01 (- 0.393 + 0.006)
—0.293

0.269
—0.3595

0.6+ 0.1 (0.44+ 0.02)
0.1+ 0.6 (0.36+ 0.06)
0.6+ 0.5 (0.82+ 0.08)
0.4+ 0.4 (0.31+0.08)
0.399
0.420
0.0892

important. Obviously, a diagonalization of the
Hamiltonian is impossible because this requires
the solution of the eigenvalue problem for a 2"
& 2" matrix.

In Table I, we present results for the energy
and specific heat per site for different values of
m and P =2 which corresponds to a very low tem-
perature. As explained previously, the proper-
ties of the fermion model are calculated by simu-
lating a boson model and therefore the results for
the latter are also included. In general, the sta-
tistical errors on the boson data are considerably
smaller than the statistical errors on the fermion
data.

Because of the weak m dependence for large val-
ues of m, we estimate the energy at P =2 to be E
= —0.35 and comparing this result with the exact

ground-state energy" E,=-0.345, we may con-
clude that we are in the low-temperature regime
where quantum effects dominate.

The statistical errors on the specific heat for
the fermion model are rather large. This is due
to the fact that the fluctuations in the energy are
small and therefore difficult to sample, and many
more samples would be needed to obtain reason-
able statistics. For comparison, the exact re-
sults (EX) for eight sites, the results of the Har-
tree-Fock (HF) approximation, and of the clas-
sical limit (CL) /=0 are also given. Because HF
approximation is equivalent to a variational prin-
ciple, it should yield reasonable values for the
energy and this is indeed the case.

In Figs. 1 and 2 we have plotted the Fourier-
transformed density-density correlation functions

M

$(q) =(n, n, ) +2 Q cos(2mkq/M)(n, n, +„)—&„0(&/M)

)=2 N =16 M=32
t=1 v= 2 m=24

CL

)=1 N=16 M=32

t=1 v=2 rn=&0
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FIG. I, Comparison between the density-density
correlation functions obtained by the Monte Carlo cal-
culation (solid circles), the Hartree Fock (HF) ap-
proximation, the classical limit (CL) t = 0, and the
exact N= 4, M = 8 diagonalization (crosses). Note that
P = 2 corresponds to a very low temperature.
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FIG. 2. Comparison between the density-density
correlation functions obtained by the Monte Carlo cal-
culation (solid circles), the Hartree Fock (HF) ap-
proximation, the classical limit (CL) t = 0, and the
exact N= 4, M= 8 diagonalization (crosses).
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for different temperatures.
At low temperatures p =2, both the HF and the

CL approximation are qualitatively wrong. In the
CL model, which is equivalent to the 1D Ising
model in a field, the correlation function S(q =&)
diverges as T - 0. For modest temperatures P
=1, the CL limit and the Monte Carlo results for
S(q) are in very good agreement but the energy
and specific heat are not. Both figures clearly
demonstrate that HF approximation should not be
used to calculate correlation functions for this
strongly interacting system. Comparing the
Monte Carlo data with the exact V=4, M=8 re-
sults, we conclude that it is not necessary to in-
crease the number of sites.

We have shown that it is possible to calculate
the temperature-dependent properties of a quan-
tum model with sufficient accuracy. Although we
only studied a very simple model, we have cho-
sen a model for which quantum effects are very
large. Our approach can be extended to other
models such as the spin-~ Heisenberg model and
the extended Hubbard model. An extension to 2D
or SD models is straightforward but it is an open
question whether the actual simulations can be
done with a reasonable amount of computer time.
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Upper limits to astronomical photon backgrounds are used to derive constraints on the
radiative lifetime of neutrinos. With the assumption that the radiative decay dominates
the decay routes available, comparisons with predicted fluxes exclude radiative lifetimes
between 1013 and 10 —10 3 sec for neutrinos which decay to lighter neutrinos and 5-50-
eV photons. For ~~ « ~~, this photon-energy rarge corresponds to a parent-neutrino—
mass r~&~e of 10-100 eV/c2.

PACS numbers: 14.60.0h, 95.85.Mt, 98.70.Vc

Constraints on the radiative lifetime of massive
neutrinos have been widely discussed. ' " Here
we concentrate on the observational constraints
on neutrinos in the 10-100-eV/c' range, since re-
cent experimental evidence suggests that the
mass of the electron antineutrino is within the
range 14-46 eV/c'. " Within this mass range,
neutrinos would dominate the mass density of the
universe without violating the current observa-
tional limits on that density. ""

Arguments' ' based on distortions to the micro-
wave background, effects on big-bang nucleosyn-

thesis, and the results of laboratory experiments
rule out lifetimes less than the decoupling time
(10"-10"sec); hence we concentrate on longer
lifetimes. We assume throughout that the radia-
tive decay dominates the total decay routes and
that the secondary neutrino is very light com-
pared to the parent neutrino. The 10-100-eV/c'
parent neutrinos then correspond to 5-50-eV de-
cay photons. Note that the lifetime limits as a
function of decay photon energy will be indepen-
dent of this latter assumption.

The most direct limits come from considera-
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