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FIG. 1. Commutability of the Backlund transform.

which is different but seemingly similar to Eq.
(9) is known. " In the framework of the IST meth-
od, I can generalize the customary Zakharov-
Shabat scheme which generates usual soliton
and "oscillating" soliton solutions to include the
present similarity-type "ripplon" solutions as
well. "

Finally, I note that the present decay-mode so-
lution does not have proper limit in n -0 (one-di-
mensional KdV limit) at the present form. In this
respect, it seems that much still remains to be
studied about decay modes in the most general
form.
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It is shown that the acceleration of the sine-Gordon. solitons by a constant torque in-
creases as t for small times t. For larger times, the velocity behaves like tanh t . Thus
the soliton dynamical behavior is not Newtonian. Analytical arguments are given based
on the linear perturbation theory which generalize this conclusion to any weak external
perturbation of sine-Gordon solitons.

PACS numbers: 03.20.+ i

The sine-Gordon (SG) equation including a con-
stant external field y is written in dimensionless
form

azt BQ

t &x2 + sly —g.

This equation is related to many problems of

great physical interest. " In the present Letter,
we are only concerned with the solitary-wave so-
lution of (1).' ' A very simple and suggestive il-
lustration of the basic properties of this solution
is found in the SG pendulum chain system per-
turbed by the application of a constant torque y
to each pendulum. "We first restrict ourselves
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FIG. 1. Soliton velocity & vs time t for I'=0 and p
=0.3. Circles and triangles, numerical values ob-
tained from (2) and from direct measurements of (Bu/

Bx)~» (V&1 and V& 1, respectively); dash-dotted line,
Newton's linear law V =4ngt; solid line, the theoretical
formula (7) with a weak time dependence of y obtained
nume ric ally.

in this Letter to the case of a SG soliton acceler-
ated by a consta, nt field without dissipation. We
numerically show that such a soliton does not
obey the a priori expected Newton dynamics' and
give some analytical arguments to explain this re-
sult. Then we show that the addition in (1) of a
small linear "viscous damping" I'Bu/Bt does not
qualitatively change the conclusions of this paper
concerning the non-Newtonian acceleration of the
solitary wave. We conclude by pointing out the
generality of this new effect: We analytically
show that the non-Newtonian nature of the soliton
dynamics does not depend on the special form of
the given perturbation (which may be localized in
space or not).

In Figs. 1-3, we plot the evolution of the sol-
iton velocity V versus time t for increasing val-
ues of the applied field y. The initial condition
is in all cases a static (V =0) antikink SG solu-
tion. This choice does not reduce the generality
of the results since a Lorentz transformation to
the soliton rest frame is always possible. ' We
have numerically obtained (by the leap-frog meth-
od with three points in time and seven points in
space and using a classical Simpson method for
the integrals) the velocity V according to

FIG. 2. I'=0; g=0.6; the dots show formula (7) where
y= 1

of y =0 by comparing them with the dynamics of
an exact soliton solution. The error was less
than 10%%ug (the same order of magnitude as for the
deviation between numerical and theoretical
curves in Figs. 1-4).

Definition (2) means that we measure the veloc-
ity of the solitary wave at its center of mass. It
is acceptable only for V& 1 (circled line in Figs.
1-4), since spatial oscillations growing in the
tail of the solitary wave as V increases become
important when V- V„=1 and significantly per-
turbs the kernel Bu/Bx in (2).' For further meas-
urements of V, we located the abscissas of the
soliton spatial derivative maxima (Bu/Bx) „and
plotted the corresponding velocity versus time in
Figs. 1-4 (small triangles).

The results are quite surprising. They show,
even for small values of X, a definite deviation
from the Newtonian kinetic law V(f) = +m)(t."
Moreover, the smaller the time t, the more im-
portant this deviation. This is the opposite of
what is expected from a classical particle accel-

(2)

The increments ~ and Af have been respectively
chosen to be 0.25 and 0.1. The accuracy of the
numerical results has been checked in the case

FIG. 3. I"=0; &=0.9. Note that g &gthes~g =0.7246
which implies that u (t) — (Refs. 6 and 7). Neverthe-
less, for small t, sinu -u and (5) remains valid.
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FIG. 4. I'=0.1; g=0.6; then V~; =0.98.

y (t)V (t) = -,'m[)(t du ddt],— (4)

since we assume as initial condition an exact
static antikink solution. As this soliton starts to
move, we have sinu„- u„ in (8), and therefore
u „(t)-y[1 —cost]. Equation (4) then implies

V (t ) myt'/24y (t). — (5)

This formula, which fits very well the numerical
data plotted on Figs. 1-3 for f, ~ 0, describes a
definite deviation from Newton's law V(t) = &vyt,
since it leads to a time-dependent acceleration

crated by a constant force. As a matter of fact,
there is- a progressive acceleration proportional
to t' and, later on, an inflection point. We note
that these anomalous effects did not appear in the
work of Nakajima and Onodera' because they
adopted a too small time scale in their Fig. 2.
Finally, we point out that the same basic features
of this non-Newtonian kinetics still exist when a
"damping effect" I'au/Bt is added to the left-hand
side of (1) (see Fig. 4)."

We use the technique of the "perturbed poten-
tial well" and refer to Refs. 11 and 12 for a de-
tailed description of this method. For x —~ ~ Eq.
(1) reduces to

d'u ddt'+ sinu „=y,

where u „(t)=u(+ ~,t). We look for a solution of
the form u(x, t) = f (z)+u (t) where z =y(t)[x
—J,'V(t )dt'] and f(a)~4t an-'e xp(- z). For t-0,
the above Ansatz is appropriate since the pertur-
bation function g =u —f determined by (1) is -',yt'.
The substitution of this Ansatz in (1), together
with the requirement that f must remain regular
at both wings (z -+ ~), leads to the so-called
force equation, ""which reduces to (8) for g

This force equation may be integrated and
we obtain the "energy equation" which leads, at
z-~, to

V(t) = tanh(~qt'/24y'). (7)

When a small damping (0 & I'«1) is present in

Eq. (1), we obtain, by proceeding as above, the
corresponding soliton kinetics:

V (t) = tanh[(wgt /24y') (1 —2I't)]. (8)

In summary, we show on Figs. 1-4 that formu'-
las (7) and (8) agree fairly well with the numer-
ical plots of V(t). Their deviation with respect to
the numerical values may be reduced when the
wave number y is allowed to increase slowly with
time, according to the actual numerical results
(see Fig. 2).

This non-Newtonian soliton acceleration is a
quite general result, valid in particular for the

(in t'), even for small values of the velocity V.
We note that such an effect avoids the physical
paradox lying in the soliton inertial mass m; =4/m

being different from the soliton rest mass ~„=8.'
The further kinetic behavior of the antikink for

a larger t may be understood as follows: At a
given value of time t, we introduce the tangent
Galilean frame moving with a velocity V(t) with

respect to the laboratory frame. ' Then, for sake
of simplicity in the calculations, we make two
classical assumptions": (i) The deviation of the
soliton trajectory with respect to the trajectory
of the tangent frame is small enough to allow the
use of formula (5) in which the laboratory time t
has to be replaced by its I orentz-transformed
value 7 = (1 —V')"'t. This approximation is rath-
er strong since it implies that sinu „-u„even for
a large t. (ii) The time variation of the wave
number y remains small and y itself does not sig-
nificantly differ from the I orentz factor (1

V2)- g/2

We are aware of the contradiction introduced
by these approximations, since they imply that
we consider small values of V compared with
unity and at the same time we assume that the
antikink still behaves as a classical relativistic
particle. Nevertheless, we numerically check
that they lead to acceptable values of V (even
when it becomes rather large). We have V(t+dt)
= [V(t) +'U(~+d~)][1+ V(t)'U(~+d~)] ', where 0 is
the relative velocity of the antikink with respect
to the tangent frame. Since'(v) =0, we obtain,
in first order in'U/V,

(1—V')-'dV/dt =d(y-'v)/d~.

Integrating Eq. (6) and adopting for 'U(7) expres-
sion (5), we obtain the "relativistic" generaliza-
tion of the solitary-wave kinetics (5):
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whole time scale where the soliton motion re-
mains nonrelativistic. To demonstrate this im-
portant result in terms of the pioneering linear-
ized perturbation theory, ' we perturb the SG
equation about its kink solution and solve the re-
sulting linear inhomogeneous equation for the per-
turbation function g(z, ~) in the soliton rest frame
by expanding it in the complete set of eigenfunc-
tions (f„f»} of the Schrodinger operator with po-
tential 1 —2 sech'z. Calling g(t, x) the general
form of a weak (g «1) perturbation at the right-
hand side of the SG equation, we obtain the follow-
ing kinetic equations for the amplitudes (,(~)
= ((,f,) and g»(r) = ((,f») where the brackets mean
the scalar product in the set (f„f»]'.

d'g„/d7'= f"f,(z)g(~, z)dz;

d g»/dv +(u» g» = f f»+(z')g(v~z')dz

(~c» is the eigenvalue corresponding to f,); there-
fore

(10)

The substitution of expressions (9) in (10) and the
use of the completeness relation f,(z,)f,(z,)
+f" dhf„*(z,)f„*(z,) =5(z, -z, ) cancels the total
amplitude of the translation mode f, [once g is
assumed small enough at t ~ 0 in order to neglect
~»'g» in Eq. (9)]. Since this amplitude measures
the soliton displacement due to the perturbation, '
zoe conclude that the soliton does not move at all
within the frame of this linear perturbation the-
ory [i.e. , for small time values t a 0].' Actually,
it does, but according to a higher-order acceler-
ation process, as in the case of a constant torque
y, where the soliton undergoes an acceleration
proportional to yt' instead of y. This higher-or-
der effect is because of the account of the neglect-
ed term &u»'(» in (9). The perturbation function g
measured in the soliton rest frame is therefore
only static and yields from (10) &'g/Bv =g(v, z)
as expected since we assumed t )0.

The above result generalizes the conclusion of
the present paper concerning the non-Newtonian
nature of the SG soliton dynamics to all kinds of
weak external perturbation, localized in space or

not. It does not mean that the localized wave nev-
er behaves like a particle. We only claim that
this particle is not Newtonian. In particular,
when a final-steady-state regime is possible (for
instance, in the above case of a weakly damped
SG soliton accelerated by a constant force )(),
the perturbed soliton may well behave like a rel-
ativistic particle of velocity V„=—,v)(/I', while
the way (8) the soliton adjusts itself in order to
satisfy the new boundary conditions imposed by
the perturbation and reach this final "equilibrium"
state is definitely not Newtonian [see also Ref.
(10)]. When I'=0, this remark holds in a less
accurate sense, since the profile of the "particle"
is never stationary in the soliton rest frame,
though the soliton reaches its asymptotic (rela-
tivistic) velocity equal to unity.
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