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The Green's-function Monte Carlo method, which yields an exact ground-state solution
to the Schrodinger equation for Bose systems, is applied to liquid He, a fermion system.
With the use of a technique that projects out states of selected symmetry, strict upper
bounds to the ground-state energy of many-fermion systems have been constructed. An
upper bound has been found for liquid 3He of —2.20+ 0.05'K at the experimental equilibrium
density. This energy is more than 1'K below Jastrow variational results and much nearer
the experimental value of —2.47+ 0.01 K.

PACS numbers: 67.50.Dg

The Green's-function Monte Carlo (GFMC)
method has been shown to be an exact and flexible
method of obtaining the ground-state energy and
structure of Bose systems. The method is des-
cribed in detail in several references. "' Since
the initial presentation of practical GFMC calcu-
lations for Bose systems a decade ago, an out-
standing problem has been to devise similar
methods for fermion systems. ' In this paper we
show how the GFMC method can be applied to ob-
tain upper bounds to the ground-state energy of
many-fermion systems.

Although the technique presented here formally
converges to the exact fermion wave function and

energy, the computer time required for iterating
the equations n times, so as to obtain a fixed sta-
tistical error in each iterate, increases exponen-
tially with n; thus, continued iteration to demon-
strate convergence will become prohibitive at
some point. However, at each iteration our meth-
od yields an energy which is an upper bound to the
true ground-state energy, and which converges
monotonically. Therefore, useful results can be
extracted before available computational re-
sources are exceeded.

The GFMC method employs the Monte Carlo
technique to iterate the integral equation

y""(R)=Z fC(R R')y"(R )dR' (1)

with G (R,R ') defined by

eC(R,R') = b(R -R').

Hamiltonian, and the Green's function, respec-
tively. The salient feature of the method is that
when the iteration of Eq. (1) has converged, the
ground-state wave function obtained is not analy-
tic, but rather a set of configurations of the par-
ticles drawn from the exact ground-state wave
function (,(R). The calculation of the desired ex-
pectation values is accomplished by evaluating
appropriate many-body integrals at this set of
configurations. These techniques are described
adequately elsewhere. "We will confine our at-
tention to the evaluation of the energy.

The calculation begins by choosing a trial fer-
mion wave function, P» that is totally antisym-
metric under interchange of particles of like spin.
This wave function serves the purpose of being
g~'(R), the starting solution to be iterated. It al-
so provides our energy weighting function.

Let(g, I denote the eigenfunctions of the Hamil-
tonian II. Some of these functions will be sym-
metric, others antisymmetric, and many will
have mixed symmetries. Also let gs" be the wave
function obtained from the nth iteration of Eq. (1)
with (~'=fr. W'e define the "mixed energy" at the
nth iteration to be

&&"= &4, @l( ")/(t, l 4~").

We will show that for alla, E~"~Ez the true Fer-
mi ground-state energy.

The Green's function G(R,R') and t/r~" can be ex-
panded in the complete set of states (g, ) as

Here R stands for the coordinates of the N parti-
cles in the system; (" is the wave function ob-
tained after n iterations of the equation; and E„
IJ, and |"(R,R') are the ground-state energy, the

4~"

=Ra�)"

()(R), (4)
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The zero point of the energy has been chosen so
that all E, &0. From Eqs. (1), (4), and (5) we can
write a recursion relation for the a,":

+ n+1 (E /E )& n

This relation and the orthogonality of the g, 's can
be combined to give

z. (q et' "& g "[e~q "&

E (y [q n& (y n[q n& Et

where

n g(E /@ )n/2+ Oy (8)
l

The mixed energy is exactly equivalent to the ex-
pectation value of the Hamiltonian with g~", and
is therefore greater than or equal to the exact
ground-state energy. As n-~, only the lowest-
energy state with nonzero a, ' will contribute.
Since gr is chosen to be antisymmetric, this will
be a Fermi state. This proof is valuable because
gr, not f~", is known analytically and only the
mixed energy can be evaluated in our Monte Car-
lo procedure. We note that this proof makes no
assumptions about the fermion nature of the prob-
lem. It is equally true for bosons if gr is not or-
thogonal to the Bose ground state.

In the actual calculation, configurations are
sampled with the appropriate probabilities from
the Green's functions and wave functions. Hence,
all quantities have some statistical uncertainty.

Since probability densities must be positive defi-
nite, it is necessary to separate the fermion wave
function into two positive parts, i.e. ,

The (~'"' (g~" ') is chosen to be zero where gr
is negative (positive). All the required integrals,
e.g. , Eq. (1), are linear in g~" and can be evalu-
ated for g„n'+' and g~"' ' separately S. ince t/r~"'+'

and g~n' ' are not individually orthogonal to low-
er-energy nonfermion states, each iteration of
Eq. (1) introduces into g~n+'"' increasingly lar-
ger nonfermion components. Though these com-
ponents in the full g~" cancel on the average,
their contribution to the statistical uncertainty of
the expectation value does not. Eventually the
Bose ground state dominates g~""' and the compu-
tational time for fixed uncertainty increases expo-
nentially with n.

We have completed calculations using two dif-
ferent initial trial wave functions. The first trial
function which we used was a simple Slater-Jas-
trow wave function:

gr, =gz det[exp(i%& ~ r/)],

y, =exp[- ~~+M(r, ,)],
(10)

where the det stands for a determinant for each
spin state. The second trial function included
both symmetric three-body correlations and back-
Qow correlations in the determinants-:

gr, =g, det(exp(ik;. [r,-+gq(r„)r»])), g, =exp[- &Qu(r, ,) —&Q g g(r„)g(r„)r„r.„.].
l&j 5&j l i &j&l

The wave function gr, gives a substantially im-
proved energy over that of g» in standard varia-
tional calculations. The variational calculations
with these two forms for a trial wave function are
described in detail elsewhere. 4 Our results are
summarized in Figs. 1-3. All calculations were
done at the experimental equilibrium denstiy of
liquid 'He.

Figure 1 shows the energy as a function of
iteration for both trial wave functions. The ener-
gies at n =0 are quite different; however they
come close together at large n.

Figures 2 and 3 show the overlap integrals
(gr ~

g~"&, and the boson component energies of
each wave function as a function of iteration n.
The boson component of g~" clearly dominates
the calculation asymptotically.

These calculations give a significantly better
upper bound for liquid 'He (- 2.20+ 0.05 'K) than
ever obtained before. A discrepancy remains be-

~ tween our results and the experimental value of
the energy —2.4V+0.01'K.' In Fig. 1, it appears
that both wave functions approach an energy of
—2.2 'K, about 0.3 'K above the experimental val-
ue. There are several possible explanations for
the difference between theory and experiment:
(1) The procedure has not converged; (2) the 3He

potential is incorrect; (3) the finite number of
particles simulated could affect the energy;
(4) the trial wave function could be nearly orthog-
onal to the Fermi ground state.

The question of convergence is difficult to an-
swer. Figure 1 itself is ambiguous. To check
the convergence adequately, it may be necessary
to iterate to an n of the order of 70-100. To get
an accuracy of 0.05 'K then would require more
than an order of magnitude more computation
time. Such a calculation is feasible.

The two-body potential we have used is the
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FIG. 1. Energy of the 3He wave function calculated
every five iterations of Eq. (1). The circles are re-
sults for the initial choice of a plain Slater-Jastrow
wave function l.Eq. (10)J . The crosses are obtained
by using the full wave function including backflow and
triplet correlations lEq. (11)J . A slight lateral dis-
placement of one set of results has been made for ad-
ditional c1arity.

HFDHE2 potential of Aziz et al.' and is known to
yield excellent results for liquid 'He, ' but has not
been tested near the 3He equilibrium density. We
estimate that this might give an error of about
+ 0.1 'R. Variational calculations' suggest that
the difference in the energy between a system of
the 38 particles that we used and an infinite sys-
tem is about 0.15-0.2 'K and will raise the ener-
gy. Thus the discrepancy with experiment may
be as large as 0.5 'K.

In conclusion, we have shown that GFMC meth-
ods may be employed to greatly improve upon
standard variational wave functions. It will be
important to determine the source of our discrep-
ancy with experiment. If this difference is not
due to slow convergence, then this method is
feasible for investigating the exact properties of
many-fermion systems.

In the near future we plan to publish a more
complete discussion of the question of exact and
asymptotically stable fermion algorithms in
which the computational time goes linearly with
the number of iterations, including one which we
find functional in small systems. Also we plan
to test the helium potential by solving the 'He-in-

FIG. 2. The overlap of the fermion wave functions
with the initial trial fermion wave functions. Symbol
identification is the same as in Fig. 1.
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FIG. 3. Energy of the mass-3 boson component of
Pz. for the two choices of initial wave function. The
correct mass-8 boson energy is —3.54+ 0.01 K. Sym-
bol identification is the same as in Fig. 1.

4He mixture problem in the low-concentration
limit, since experimental data are available in
this system.
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Reconstruction of the Fe(110) surface by a quarter monolayer of S is shown by low-
energy electron-diffraction intensity analysis to correspond to a model in which hard-
sphere atoms displace to a unique jamming point. After reconstruction the S atoms sit
in fourfold hollows of touching Fe atoms with S-Fe bond lengths of 2.17 and 2.36 A. A

general construction for 2&2 reconstructions with rectangular symmetry is given and
applied to this case and to Ni(001) (2&&2)-C.

PACS numbers: 68.20.+ t, 61.14.Hg

Clean metal surfaces generally do not recon-
struct, i.e., rearrange the atoms of the surface
layers to give a different unit cell than the bulk. '
However, when the surface has an ordered ad-
sorbate with a different unit cell than the sub-
strate bulk, reconstruction of the top substrate
layers to the adsorbate unit cell and symmetry'
should be universal. The atom displacements
from bulk positions are small for the low-index
(high-packing-density) surfaces commonly stud-
ied, since the range of movement is limited by
the jamming of atoms against each other. A suc-
cessful quantitative study has previously been
carried out for only one case, Ni(001)(2&& 2)-C by
low-energy electron-diffraction (LEED) intensity
analysis. ' We report here the case of Fe(110)p(2
&& 2)-S also studied by LEED intensity analysis,
which resembles the Ni case, but shows interest-
ing differences. In both cases an adsorbate atom
is situated in a fourfold hollow site of the metal

surface, i.e., a hollow surrounded by four atoms,
not necessarily at the same distance, and the
presence of the adsorbate induces a 2 & 2 recon-
struction which enlarges that hollow by contract-
ing other hollows. However, in the Fe case there
is rectangular symmetry and the reconstruction
is induced by a quarter monolayer of S atoms,
whereas in the Ni case the structure retains four-
fold rotational (but not square) symmetry and is
induced by a half monolayer of C atoms. In the
Fe case, the analysis shows that both adsorbate
and reconstructed substrate have 2 & 2 symmetry,
hence an intensity analysis is required to deter-
mine that the Fe atoms have moved from their
bulk positions; in the Ni case, the adsorbate has
c(2 && 2) symmetry and the presence of additional
diffracted beams indicates directly that the sub-
strate has a p(2&& 2) reconstruction. The anisot-
ropy of the Fe case suggests a simple mechanism
in which the S atom increases the two shorter
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