
VOLUME 46 16 MARCH 1981 NvMBER I I

Nonlinear Intermediate Long-%ave Equation: Analysis and Method of Solution
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A physically interesting nonlinear singular integro-differential equation which is an in-
termediary between the Korteweg-deVries and Benjamin-Ono equations is considered
via the inverse-scattering transform. Novel aspects of the theory and limits to the Ben-
jamin-Ono equation are discussed.

PACS numbers: 03.40.Kf, 02.30.+g

Recent studies have shown that the equation

u, +5 'u, +2uu, +T(u„„)=0,

where (Tu)(x) =P"„dy u(y) coth[&(y -x)/2&]/2&
(P represents the principal-value integral), is
of mathematical and physical interest. Physical-
ly it represents long waves in a stratified fluid
of finite depth characterized by the parameter
6.'" Depending on ~ we get the Korteweg-de
Vries (KdV) equation as 5- 0 (shallow-water
limit),

u, +2uu„+(5/3)u„,„=0, (2)

and the Benjamin-Ono (BO) equation as 5- ~
(deep-water limit),

ug +2uus +H(u~ ) =Oq

where (Hu)4) =n 'f"„dy u(y-)/(y -x) (Hi)bert trans-
form). Hence Eq. (1) is an intermediary equation
between these two very interesting nonlinear evo-
lution equations. Hereafter we shall refer to (1)
as the intermediate long-wave (ILW) equation.
Mathematically speaking, Eq. (1) has soliton so-
lution, "a Backlund transformation, and a novel

type of linear scattering problem. " In this Let-

ter we shall do the following:
(a) Relate Eq. (1) directly to a linear Gel'fand-

Levitan integral equation which has N-soliton
solutions.

(b) Discuss how to deal with this new scattering
problem. We show in what sense the above
Gel'fand-Levitan equation can be derived from
analytical considerations of suitable scattering
data.

(c) We shall also briefly discuss the limiting
case of the BO equation for which there has also
been considerable study (see, for example, Refs.
7-12) regarding solitons, Backlund transforma-
tions, and linear scattering problems.

We begin with point (a). The operator T de-
fined below Eq. (1) immediately suggests a split-
ting of the function u(x) into appropriate analytic
functions. Namely, if we call U(z) =(Tu)(z), Imz
&0, then the boundary values on z =x, x real,
satisfy U (x) =(Tu)4)+iu(x). Here U'(x) are the
boundary values of functions analytic in the hori-
zontal strip between Imz =0 and Imz =+26, and
are periodically extended vertically. Moreover,
periodicity requires that U (x) =U (x +2i5). It is
convenient to define g(x) =——U'(x+i5)/2 [here
g(z) is analytic in the strip —5(Imz «], where-
upon the splitting takes the form u (x) =i[g(x —i5)
-g(x+io)], (Tu)4) =- [g(x - i5) +g(x+io)]. Hence
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(1) takes the form

i(g'-g ), +i& '(g'-g ).-2(g'-g )(g'-g ).-(g»'+g» )=o,

where g '(x) =g(v+ i8) =- U'Q)/2.
Consider the following linear Gel'fand-Levitan integral equation:

K(x,y) +F(X,y)+ f„K(X,s)F(s,y)ds =0, for@ &x.

Following the basic idea of Zakharov and Shabat, "we introduce linear operators on E, such that

I.,F =(i8„+-'.6-')F'(x,y) +(i8, --'.8-')F-(,y) =O,

L2F = (i8, +8„—8, )F(x,y) =0,

where F =F(X+i8, y wi5). Then, direct calculation shows that K(x,y) must satisfy

[i8„+-'.6-'+iK'g, x) -iK (x,x)]K'(,y) +(i8, --'8 ')K b,y) =o,

[i8, +8„'-8,'+28„Kg,x)]K(x,y) =0.

(4)

(6a)

(6b)

(ta)

(Vb)

Compatibility between Eqs. (7a) and (Vb) gives us Eq. (4) with g '(x) =K' Q,x) —=K(x v i6, x+ i5). The N
soliton solutions to Eq. (1) can now be readily constructed (in the usual manner) by assuming exponen-
tial solutions for F; i.e., F(X, y) =+j-AC)(t) exp(if, x+ik„y), where L„=i~,+ [~, cot(2~, 8) ——,5 '], g)
&0 and C, (t) =C, (0) exp[-4z, (z, cot2z, 5 —25 ')t]. A one-soliton solution is given by u =2m, sin(2K, 5)/
1 cos(2z, 6) +cosh[2~, {x-x,(t))]], where x,(t) =(2K,) 'In[C, (t)/2K, ].

We now pa, ss to point (b). As discussed in Ref. 6, the linear scattering problem obeys (with some
changes in notation)

iP, '+(u -A)P' =pg

i(, ' + 2i (A. + ~ 5 ')g„' + g„, ' + [+ i u„- 1' (u„) +v] g
' = 0, (6b)

where X=k coth(2kb), p. =k csch(2kb), v=k'-2k(P+ —,'5 '), and here ('(x) represent the boundary values
of functions analytic in the horizontal strips between Im z =0 and Im z = +25, and periodically extended.
As mentioned earlier this implies g (x) = g'(x+ 2i5). We note that this condition immediately leads to
T(( —g ) = i(g + g ) which is required in Ref. 6, and that compatibility of Eqs. (8a) and (8b) yields
Eq. (1). In order to analyze the scattering problem, it is convenient to define a new function, W (x, k)
= t/i+(x, k) exp[ik(x —i 5)], whereupon the scattering problem becomes

ZW=iW„'+(a, +-.'6 ')(W'- W ) =-uW'

with W (x) = W'(x+2i5), f,(k) =k +[k coth(2k') ——,5 '] (We shall need the definition of f subsequently. )
Now we define specific Jost functions for real k: M'(x;k)-1, as x- —~, and N+(x;k)-exp[2ik(x-i5)],
N'(x; k) -1, as x-+ ~. Each of these functions can be shown to satisfy an integral equation. For this
purpose, we introduce the notion of a Green function satisfying SG(x, y;k) =-5(x -y) [2 defined by Eq.
(9).] Then

M'(x; k) =1+ f „G, '(x, y; k) (yu)M'(y; k)dy,

N'(x; k) = exp[2ik(x —i 5)]+f G, '(x, y; k)u(y)N'(y; k)dy,

N+(x; k) = 1+ f „G,'(x, y; k)u(y)N+(y; k)dy,

(loa)

(lob)

(loc)
where

G, , '(x, y; k)

,'m fc G+—(p;k) exp[ip(x —y)]dp,
t

and G'(p; k) =(p -(g++ —,6 ')[1- exp(- 2')]) '.
G'(p;k) has poles at p, =o, p=2&+ '(g+(k)). We
note f+ ' (" ) is a multivalued function and we
have an infinite number of poles P for which we

!
shall define p, = 2k and p„,p„(n & 1) such that
(2n -1)m/28&Imp„&(2n+ 3)m/25 and similarly for
-Imp„. Moreover double poles occur at special
values of g+(k) satisfying k =0 and P = &,(k). We
call these values (g+", g,"'j,", [Imp+"' &0,
Imp "'&0]. The contours C„C, are taken to be
the lines Rep- io and Rep+ io, respectively
(this is necessary in order to preserve the bound-
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ary conditions). It is important to remark that
Eqs. (10a)-(10c) are Fredholm-type integral equa-
tions, unlike the usual case of the Schrodinger
equation where the Jost functions satisfy Volterra
equations. In addition we note that, by using resi-
due calculus, Eqs. (10a)-(10e) can be represented
in an explicit manner useful for the proof of ex-
istence and analyticity of the solution (conver-
gence of Neumann series). From Eqs. (10a)-(10c)
one can establish the following [assuming u(x)
decays ~apidly as Lxi -~]:

(i) M', N', and N' have convergent Neumann
series in certain regions of f, plane for given 5
and maxi ui chosen small enough.

(ii) In the f+ plane, p„(n & 1) has a logarithmic
branch point at f+ = —I/26 and square-root branch
points at f '"' and P' '""

~ ~ ~ ~ ~ + +

point at f+ = —1/26 and a branch cut from f+ ———1/
25 to f+

By virtue of the fact G, +(x, y; k) —G, +(x, y;k)
=(2ib&+) ' —exp[2ik(x-y)]/2ib&, we have a
relation among M+(x;k), N+(x;k), and N+(x; k) for
real k [i.e., f, & —I/(25)],

M+(x; k) =a(k)N'(x; k) + b(k)N+(x; k), (12)

where a(k) = 1+ [I „u(y)M+(y; k)dy]/2i 5 &+, b(k)
= —{f "„u(y)M'(y; k) exp[- 2ik(y —i 5)]dy)/2i 0 g

Hence a(k) takes on the same analyticity as M+(x;

k), and as i &, i
-~, a(k) -1. On the other hand,

for g++iO with f+& —I/25 and real (i.e., k is in
the upper half plane at the edge of the principal
branch), we have a relation G, '(x, y; k) —G, '(x,
y;k*) =I/2ib&+ [note g+(0+iO) = f+(k* —iO), k*
complex conjugate of k], which yields

(14a)

(ux) Despite (xi), M (x, k) and N (x, k) are ana
(y3hlytic in the upper and lower half &, plane, respec-

tively, whenever the Neumann series converges The bound states [as x - ~, M'(x; k) -0] are de-
in this region. Moreover, as i &,i-~, M', N' fin«by a(k, ) =0, M'(x;k, )=b, N'(x;k, ), for
-1+O(1/f ) +Her. e we note that k is a multival- imkg&0 (I=1, 2, ... , N). The scattering data are
ued function of f+, and we are required to define now given by S={a(k),b(k), {k,, b, ),~,j. We have

an appropriate branch in k plane. For the func- found that a(k) has only simple zeros and they lie
tions M'and N', our principal branch is that one on the imaginary k axis, i.e., k, =~~, . From Eqs.
containing the real k axis, and which has Im k &0 (10b-10c) and consistent with our analyticity re-
corresponding to Im f+&&0 Ther. e is a branch quirements, we assume, for N' and N', the tri-

angular representations
N'(x. k) =1+J„"dsK'(x, .) expbf, (X s)1, for-imp, &0,

N'(x;k) =exp[2ik(x -i5)]+f dsK'(x, s) exp[i', (x —s) +2ik(s —ib)], (14b)

wher«'(x, s) satisfies Eq. (7) and K'(x, s) - 0 as s -~. Inverse scattering formulas are obtained ss
follows: Divide Eq. (12) and Eq. (13) by a(k) and operate with (1/2m) f dg, exp[i', (y -x)] (i.e. Fourier
transform) for y &x. Then using Eq. (14), we obtain the linear Gel'fand-i, evitan integral Eq. (5) with

b(k) E
F(x, y) = ~& dg. . .exp(igx+ig, y) + p C,- 1/2 6 Q(k) l =j.

where C, =-ib, /a, and a, =[sa/8&+]& & From Eq
(8b), the time dependence of the scattering data
is given by a(k, t ) =a(k, 0), b(k, t ) = b(k, 0) exp[-4
x ik(1+25 ')t], for real k, b, (t) =b, (0) exp[4K, (Ag

+ —,'5 ')t]. We expect the Gel'fand-Levitan equa-
tion is valid when the Neumann series expansions
of Eq. (10) converge. For fixed maxi u(x, 0) i,
when 5- ~ (the BO limit), this will not hold and
new' singularities due to the Fredholm nature of
Eq. (10) may have to be taken into account. We
briefly mention this later.

We now pass on to point (c). Our basic philos-
ophy regarding the BO equation is to obtain in-
formation by taking the limit process 5- ~. First
of all if we simply take 5- ~, then for real k,
=2k8(k) and G+(p; k) =(p —2k) '8(p), where G'(p;
k) is defined below Eq. (11) and 8( ~ ~ ~ ) is the

exp(if, x +it+, y),

usual Heaviside step function. Similarly from
the fact that G (x, y; k) = G'(x+2ib, y;k) we have
G (p; k) = G'(p; k) exp(-2') —8(-p)/2k. These
formulas suggest a natural splitting of the 5 func-
tion and the Green function. Hence from these
results, we may deduce the split equations for
the eigenfunctions,

iM„+(x; k) + 2k[M+(x; k) —1]
=P '(uM')(x; k),

M-(» k) =1+(2k)-'P (uM")(x; k),

(16a,)

(16b)

where P'= 2(1 v iH) are the usual projection opera-
tors. It is also worthwhile noting that the eigen-
value problem with k &0 (6- ~) in Eq. (16) cor-
responds to what happens to g„&—1/26 for finite
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( )
" y+i "exp(-2iky)

p —z p —z
(19)

is the condition which determines the discrete
eigenvalues. For v=n=integer, Eq. (19) is the
Laguerre polynomial of degree n, i.e. , D„(k)
=I,„(-4k)=0, for k &0. Hence, for v=n, there
are n-real distinct eigenvalues, e.g. , for n =1,
k, = —1/4; for n=2, k, , = —(2+v2 )/4, etc. More-
over, this condition corresponds to the require-
ment that 9" is, in fact, analytic in the upper
half plane. Thus we expect to find n solitons
when v=n (in agreement with Ref. 14). The situa-
tion with vginteger is more difficult. Neverthe-
less we found that Eq. (18) has n eigenvalues for
v in the range n —1&v ~n (n=1, 2, . . . ). We also
remark that when v =1 the eigenfunction W'(x; k)

Moreover we have found a solution of the
homogeneous equation for N'(x; k) with some k &0
(this seems to be related to BO solitons). In this
regard, we note that one can actually compute
certain eigenfunctions of the scattering problem
for the BO equation. %e shall use the scattering
problem [from Eq. (9) with 6- ~]:

i W„+ +(u + 2 k) W+ = 2k W

Let us consider u(x) = 2v/(x2+1) = iv[1/(x +i) —1/
(x —i)] as an example. There is a natural way to
split the eigenvalue problem Eq. (17). Namely
multiply by (x —i ) and require both sides to be an
entire function. For the case of bound states
(solitons) we take 2k(x —i)W =1. Then the solu-
tion for W can be found to be

+ . x —i ' ~ y+i 'exp[2ik(x —y)]g/+=-j -- . . — — --.— — dy,
~

~

~ ~

~

+Z g —g

(18)

requiring W -0 as ~x~-~. This implies im-
mediately that

satisfies the homogeneous equation of Eq. (10b)
with G,

' given by G, '(X, y;k) =(2~) 'J dp(p
—2k) 'exp[ip(x —y)] for k =k, &0.
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