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A physically interesting nonlinear singular integro-differential equation which is an in-
termediary between the Korteweg—deVries and Benjamin-Ono equations is considered
via the inverse-scattering transform. Novel aspects of the theory and limits to the Ben-

jamin-Ono equation are discussed.

PACS numbers: 03.40.Kf, 02.30.+g

Recent studies have shown that the equation
U, +6"tu, +2uu, +7T (U, ) =0, 1)

where (Tu)(x) =£" dy u(y) cothlr @y —x)/26] /26
(7« represents the principal-value integral), is
of mathematical and physical interest. Physical-
ly it represents long waves in a stratified fluid
of finite depth characterized by the parameter
6.*2 Depending on 6 we get the Korteweg—~de
Vries (KdV) equation as 6 -0 (shallow-water
limit),

Uy +2uux + (6/3)uxxx =0! (2)
and the Benjamin-Ono (BO) equation as 6 -
(deep-water limit),

u, +2uu, +Hl,, ) =0, €))

where (Hu)(x)=1"4.dyul)/ly -x) Hilbert trans-
form). Hence Eq. (1) is an intermediary equation
between these two very interesting nonlinear evo-
lution equations. Hereafter we shall refer to (1)
as the intermediate long-wave (ILW) equation.
Mathematically speaking, Eq. (1) has soliton so-
lution,®*® a Bicklund transformation, and a novel
type of linear scattering problem.®*® In this Let-
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ter we shall do the following:

(a) Relate Eq. (1) directly to a linear Gel’fand-
Levitan integral equation which has N-soliton
solutions.

(b) Discuss how to deal with this new scattering
problem. We show in what sense the above
Gel’fand-Levitan equation can be derived from
analytical considerations of suitable scattering
data.

(c) We shall also briefly discuss the limiting
case of the BO equation for which there has also
been considerable study (see, for example, Refs.
7-12) regarding solitons, Bicklund transforma-
tions, and linear scattering problems.

We begin with point (a). The operator T de-
fined below Eq. (1) immediately suggests a split-
ting of the function #(x) into appropriate analytic
functions. Namely, if we call U(z) =(Tu)(z), Imz
#0, then the boundary values on 2 =x, x real,
satisfy U*(x) =(Tu)(x) £ iu(x). Here U*(x) are the
boundary values of functions analytic in the hori-
zontal strip between Imz =0 and Imz =+ 26, and
are periodically extended vertically. Moreover,
periodicity requires that U “(x) =U" (x +2i6). It is
convenient to define g(x) =-U*(x +i56)/2 [here
g(z) is analytic in the strip—6<Imz<5], where-
upon the splitting takes the form u(x) =il g(x - 0)
- gl +38)], (Tu)x)=-[gk -i6) +glx +i6)]. Hence
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(1) takes the form
i(g*—g"), +i07 (g -8 ), -2(g" =g )& =87 ) = (&ex " +84x ") =0, (4)

where g *(x) =gk ¥i0) == U*(x)/2.
Consider the following linear Gel’fand-Levitan integral equation:

K(x,y)+F(x,y)+f:K(x,s)F(s,y)ds=0, fory>x. (5)
Following the basic idea of Zakharov and Shabat,'® we introduce linear operators on F, such that

L.F =13, +36")F*(x,y) + (@3, - 36" )F (x,y) =0, (62)

L,F=(3,+98,>-8,%)F(x,y) =0, (6b)
where F* =F(x¥i6,y ¥i8). Then, direct calculation shows that K(x,y) must satisfy

[, +36™ " +iK *(x,x) —iK (x ,x) | K" (x,y) +(@0,~36")K (x,y) =0, (7a)

lia, +0,2-9,% +20, K(x ,x)|K(x,y) =0. (7b)

Compatibility between Eqgs. (7a) and (7b) gives us Eq. (4) with g *(x) =K*(x,x) =K(x ¥i6,x¥¢8). The N-
soliton solutions to Eq. (1) can now be readily constructed (in the usual manner) by assuming exponen-
tial solutions for F; i.e., F(v,y) =2, C,(t) exp(it. ,x +i¢,;v), where &,, =ik, + [«, cot(2k,6) =367 ], «,
>0 and C; () =C,(0) expl— 4x,(k, cot2x,5 — 567 1)t]. A one-soliton solution is given by u =2k, sin(2«,5)/
{cos(2k,6) +coshl[2«,(x —x ()]}, where x,(t) = (2k,)"*In[C, (¢)/2k,].

We now pass to point (b). As discussed in Ref. 6, the linear scattering problem obeys (with some
changes in notation)

W+ =T =pyT, (8a)
iyt 200 +307 Wt + Yt +[Fhu, = T,) +1]9* =0, (8b)

where A=k coth(2k5), u=Fk csch(2kd), v=k?-2k(A+367"), and here ¥*(x) represent the boundary values
of functions analytic in the horizontal strips between Im z =0 and Im z =+26, and periodically extended.
As mentioned earlier this implies 7 (x)=9*(x+216). We note that this condition immediately leads to
T(p* =9 )=1($*+ ¢7) which is required in Ref. 6, and that compatibility of Eqs. (8a) and (8b) yields

Eq. (1). Inorder to analyze the scattering problem, it is convenient to define a new function, W*(x, k&)
=y*(x, k) exp[ik(x — 16)], whereupon the scattering problem becomes

EW=iW, " +(&,+ 20 HW =W )=—uw* (9)

with W7(x)=W*(x+2i6), &,(B)=Fk*[k coth(2k6) - 367'] (We shall need the definition of ¢. subsequently.)
Now we define specific Jost functions for real 2: M*(x;k) =1, as x— =, and N*(x; k) —exp[2ik(x - £ 0)],
N*(x;2) =1, as x =+, Each of these functions can be shown to satisfy an integral equation. For this
purpose, we introduce the notion of a Green function satisfying £Glx,y ;%) =~0(x ~y) [£ defined by Eq.
(9).] Then

M R) =1+ J2LG, *(x, ; RYu(9)M*(y; k)dy, (10a)
N*(x; k) = exp|2ik(x = 16) |+ [« G, (%, 3; RYu(y)N*(3; k), (10D)
N'(x8) =1+ Jo G, *(x, 3; RYu(9)N "(3; )y, (10c)
where |
G, , (x, v; k) shall define p_, =2k and p,, p, (n =1) such that
(22 -1)71/26<Imp,<(2n+ 3)7/26 and similarly for
=4n). G*p;k)exp[ip(x-y)]dp, (11) ~Imp,. Moreover double poles occur at special
ne values of ¢, (k) satisfying 2=0 and p = ¢ (k). We
and GH(p; R)={p - (£,+ 30" ")[1 - exp(-20p)|}"%. call these values {¢,%?, 2,9} ,7, [Img, % >0,
G*(p; k) has poles at p,=0, p=2¢,71(Z,(R)). We Img,%’<0]. The contours C,, C, are taken to be
note ¢£,7! (++°) is a multivalued function and we the lines Rep — 70 and Rep + {0, respectively
have an infinite number of poles p for which we (this is necessary in order to preserve the bound-
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ary conditions). It is important to remark that
Eqgs. (10a)—(10c) are Fredholm-type integral equa-
tions, unlike the usual case of the Schrodinger
equation where the Jost functions satisfy Volterra
equations. In addition we note that, by using resi-
due calculus, Egs. (10a)-(10c) can be represented
in an explicit manner useful for the proof of ex-
istence and analyticity of the solution (conver-
gence of Neumann series). From Eqs. (10a)-(10c)
one can establish the following [assuming u«(x)
decays rapidly as |x|—<«]:

(i) M*, N*, and N* have convergent Neumann
series in certain regions of ¢, plane for given 0
and max|u«| chosen small enough.

(ii) In the ¢, plane, p, (» =1) has a logarithmic
branch point at £, =~1/26 and square-root branch
points at £,® and &,("* 9,

(iii) Despite (ii), M*(x; k) and N*(x; k) are ana-
lytic in the upper and lower half ¢, plane, respec-
tively, whenever the Neumann series converges
in this region. Moreover, as | {,|=, M*, N*
-1+0(1/t,). Here we note that & is a multival-
ued function of {,, and we are required to define
an appropriate branch in 2 plane. For the func-
tions M* and N*, our principal branch is that one
containing the real k axis, and which has Im 220
corresponding to Im §+<0 There is a branch |

N'x; k) =1 +f;° ds K*(x, s) explit, (v -
N*(x; k) =exp|[2ik(x ~i6)]
where K*(x, s) satisfies Eq. (7) and K*(x, s) -

s)], for Im¢, <0,
+f:dsK+(x, s) explig,(x — s) +2ik(s - 10)],

point at ¢, =-1/26 and a branch cut from {,=~1/
26 to £, =~ o,

By virtue of the fact G, *(x, y; k) —= G, *(x, y; k)
=(246¢,) ' = exp[2ik(x - ¥)]/2¢6L., we have a
relation among M*(x; k), N*(x; k), and N*(x; k) for
real & [i.e., £,>~-1/(20)],

M*(x; k) = a(k)N*(x; k) + b(R)N*(x; k), (12)

where a(k)=1+[J . u(y)M*(y; k)dy]/216¢,, b(R)

= —{[Zu(y)M*(y; ) exp| - 2ik(y - i0)]dy}/2i6¢..
Hence a(k) takes on the same analyticity as M *(x;
k), and as | £,| =, a(k) ~1. On the other hand,
for £,+40 with £,<-1/26 and real (i.e., k is in
the upper half plane at the edge of the principal
branch), we have a relation G, ¥(x, y; k) - G, *(x,

y; B*)=1/216¢, [note ¢, (k+10)={ (k* —10), k*
complex conjugate of 2], which yields

M*(x; k) =a(R)N *(x; b*). (13)

The bound states [as x — «, M*(x; £) - 0] are de-
fined by a(k,) =0, M*(x;%,)=b,N*(x;k;), for
Imk,;>0(I=1,2,...,N). The scattering data are
now given by S={a(k), b(k), {k;,b,},%,}. We have
found that a(k) has only simple zeros and they lie
on the imaginary % axis, i.e., B, =ik,. From Egs.
(10b-10c) and consistent with our analyticity re-

quirements, we assume, for N* and N*, the tri-
angular representations
(14a)
(14b)

0 as s -, Inverse scattering formulas are obtained as

follows: Divide Eq. (12) and Eq. (13) by a(k) and operate with 1/21r)f dg, expli¢,(y -x)] (i.e. Fourier
transform) for y >x. Then using Eq. (14), we obtain the linear Gel’fand-Levitan integral Eq. (5) with

F(x,y)=§nfw b(k)

-1/2%

ag,—=

where C,=-ib,/d, and a,-—[aa/3§+];+=;ﬂ, From Eq.

(8b), the time dependence of the scattering data
is given by a(k, ¢t) =a(k, 0), b(k, t)=0b(k, 0) exp|-4
X 1k(X+3671)t], for real &, b,(¢)=0b,(0) exp[4k,(r,
+306™1¢]. We expect the Gel’fand-Levitan equa-
tion is valid when the Neumann series expansions
of Eq. (10) converge. For fixed max|u(x, 0)|,
when 6~ (the BO limit), this will not hold and
new singularities due to the Fredholm nature of
Eq. (10) may have to be taken into account. We
briefly mention this later.

We now pass on to point (c). Our basic philos-
ophy regarding the BO equation is to obtain in-
formation by taking the limit process 6~ «, First
of all if we simply take 6 —~, then for real &, ¢,
=2k0(k) and G*(p; k) =(p — 2k)"16(p), where G*(p;
k) is defined below Eq. (11) and 6(-«+) is the

a(%) exp(zg_x +Z§+y) + Igczexp(ig_zx +i§+ty),

(15)

usual Heaviside step function. Similarly from
the fact that G™(x, ¥; k) = G*(x +2i6, y; k) we have

G (p; B) =G (p; k) exp(—206p) ~ 6(~p)/2k. These
formulas suggest a natural splitting of the 6 func-
tion and the Green function. Hence from these
results, we may deduce the split equations for
the eigenfunctions,

iM,"(x; ) +2k[M*(x; k) — 1]
=P (uM*)(x; k),
M (x; k) =1 +(28) 1P~ (uM *)(x; k),

(16a)
(16b)

where P*=1(1%4H) are the usual projection opera-
tors. It is also worthwhile noting that the eigen-
value problem with 2 <0 (6~ ) in Eq. (16) cor-
responds to what happens to ¢, <-1/26 for finite
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6. Moreover we have found a solution of the
homogeneous equation for N*(x; k) with some 2 <0
(this seems to be related to BO solitons). In this
regard, we note that one can actually compute
certain eigenfunctions of the scattering problem
for the BO equation. We shall use the scattering
problem [from Eq. (9) with 6—]:

iW, (2R W= 2 W T, (17

Let us consider u(x) =2v/(x? +1) =iv[1/(x +i) =1/
(x —7)] as an example. There is a natural way to
split the eigenvalue problem Eq. (17). Namely
multiply by (x—7) and require both sides to be an
entire function., For the case of bound states
(solitons) we take 2k(x—-i) W~ =1, Then the solu-
tion for W™ can be found to be

v b L
W+=_i<: l)f <y+1‘> exp| 2k(x y)]dy’
+2 — y-t y—t

(18)
requiring W* -0 as |x |-, This implies im-~
mediately that

_(e(y i\ exp(-2iky)
D,,(k)_j:w<y_i> VW =0

(19)

is the condition which determines the discrete
eigenvalues. For v=n=integer, Eq. (19) is the
Laguerre polynomial of degree #n, i.e., D,(k)
=L,(-4k)=0, for £ <0. Hence, for v=n, there
are n-real distinct eigenvalues, e.g., for n=1,
k,=-1/4; for n=2, k, ,=-(2+V2)/4, etc. More-
over, this condition corresponds to the require-
ment that W* is, in fact, analytic in the upper
half plane. Thus we expect to find » solitons
when v=n (in agreement with Ref. 14). The situa-
tion with v #integer is more difficult. Neverthe-
less we found that Eq. (18) has n eigenvalues for
vinthe range n-1<v<n (n=1,2,...). We also
remark that when v =1 the eigenfunction W*(x; &)

690

satisfies the homogeneous equation of Eq. (10b)
with G,"* given by G,*(x,y; %) =(277)‘1fO dp(p
—2k) " texplip(x —y)] for k=F, <O0.

This work was supported by the U. S. Office of
Naval Research, Mathematics Division under
Grant No., 0014-76-C-0867, and the Air Force
Systems Command, U. S. Air Force under Grant
No. AFOSR-78-3674.

@)present address: Bell Laboratories, 1E-347, 600
Mountain Ave., Murray Hill, N. J. 07974.

®Ypermanent address: Department of Applied Mathe-
matics and Physics, Faculty of Engineering, Kyoto
University, Kyoto 606, Japan.

!R. L. Joseph, J. Phys. A 10, L1225 (1977).

’T. Kubota, D. R. S. Ko, and D. Dobbs, J. Hydronaut.
12, 157 (1978).

’R. I. Joseph and R. Egri, J. Phys. A 11, L97 (1978).

‘H. H. Chen and Y. C. Lee, Phys. Rev. Lett. 43, 264
(1979).

5J. Satsuma and M. J. Ablowitz, in Nonlinear Partial
Differential Equations in Engineeving and Applied
Science, edited by R. L. Sternberg, A. J. Kalinowki,
and J. S. Papadakis (Marcel Dekker, New York, 1980),
p. 397.

€J. satsuma, M. J. Ablowitz, and Y. Kodama, Phys.
Lett. 73A, 283 (1979).

K. M. Case, Proc. Nat. Acad. Sci. U.S.A. 75, 3562
(1978), and 76, 1 (1979).

SH. H. Chen, Y. C. Lee, and N. R. Pereira, Phys.
Fluids 22, 187 (1979).

%Y. Matsuno, J. Phys. A 12, 619 (1979).

103, Satsuma and Y. Ishimori, J. Phys. Soc. Jpn. 46,
681 (1979).

YA, Nakamura, J. Phys. Soc. Jpn. 47, 1701 (1979).

T, L. Bock and M. D. Kruskal, Phys. Lett. 74A, 173
(1979).

13y, E. Zakharov and A. B. Shabat, Functional Anal.
Appl. 8, 226 (1974).

43. D. Meiss and N. R. Pereira, Phys. Fluids 21, 700
(1978).



