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Selective Electron Capture: A Dominant Production Process for Few-Electron States
of Light Target Atoms after Heavy-Ion Impact
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The total and delayed A—Auger-electron emission of Ne, N,, and SFy targets was in-
vestigated after 1.4-MeV/u Kr!®* and Ar'?* impact. The lines of promptly decaying
1s2Inl’ (z = 3) states observed nanoseconds after projectile impact demonstrate that se-
lective electron capture from neutral target atoms into outer-shell orbitals of slow re-
coils is an important production mechanism for certain states in highly stripped target
atoms. Contributions of prompt and delayed excited states are observed as well as

specific cascades to inner-shell states.

PACS numbers: 34.70.+e, 34.50.Hc

Spectroscopic studies of highly stripped slow tar-
get recoil ions after heavy-ion impact are of in-
terest both for atomic physics and for aspects of
plasma physics® and astrophysics,? as they give
information on interactions of the highly charged
ions with the surroundings. The target K—x-ray
and K-Auger-electron spectra reflect the states
that are directly excited by the heavy-ion impact,
and when the target ionization is very high, lines
produced by electron capture from neutral target
particles into the recoiling target ions may occur,
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Some evidence that electron capture in a second
collision is responsible for specific lines in the
observed K spectra was already found.®

Here, we report on the first direct observation
of target K Auger electrons, which arise from
capture collisions nanoseconds after the projec-
tile impact. It is demonstrated that mainly lines
from selective electron capture (SEC) dominate
the spectra. A strong production of metastable
K-hole configurations which survive capture colli-
sions and populate specific outer-shell states is
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pointed out to be a main feature of multiple target
ionization by very heavy projectiles.

In the experiments, pulsed (1 ns pulse width, 37
ns period) Kr*®* and Ar'?* beams of 1.4 MeV/u
specific energy were passed through a gas cell
containing Ne, H,O, N,, and SF, target gases at
various pressures (1 mTorr <p <100 mTorr)
measured with a capacitance manometer. In
order to demonstrate the selectivity of the elec-
tron capture associated with differences in the
target ionization potential I,, other gases were
mixed with the target. The Auger electrons were
observed at 135° with respect to the projectile
direction and analyzed by an electrostatic ana-
lyzer* of 1.4 eV full width at half maximum
(FWHM) resolution. A time-to-amplitude con-
verter was started by the electron signal and
stopped by the 27-MHz signal of the beam bunch.
For each spectrum different time windows of 5-
ns time resolution were set on the beam-bunch
periods, allowing us to separate delayed and
prompt electron emission from the total spec-
trum. Most Auger lines are identified by com-
parison with calculated transition energies.?

Figure 1 exhibits Ne K-Auger-electron spectra
induced by Kr'®* projectiles. A total spectrum
of a pure 50-mTorr Ne target [Fig. 1(a)] is com-
pared with a delayed spectrum (¢=10x2 ns) of
a mixture of 40 mTorr Ne +40 mTorr He [Fig.
1(b)]. The total spectrum is governed by few
Auger lines in the energy range 650-680 eV and
845-880 eV, which are attributed® to the decay of
Li-like one—K-hole configurations. The prom-
inent lines *P° and *P¢, which denote 1s2s2p*P°
and 1s2p%*P° initial configurations, and the lines
8p-(n=4) and ®S-(r=5), which indicate 1s2p3P and
1s2s3S cores with an additional electron in the
outer shells =4 and 5, respectively, strongly
arise in the delayed spectrum. This demonstrates
the importance of a secondary production of K-
Auger-electron lines of target atoms after heavy-
ion impact.

The delayed spectrum presents the first direct
observation of SEC from neutral target atoms
into outer shells of slowly (E,= 5 eV) recoiling
target ions and its strong dependence on the ion-
ization potentials 7, of the neutrals as predicted
by charge-transfer models.®*”7 For a pure Ne
target [I,(Ne) =21.6 eV], SEC occurs into n=4
and n=5 shells of the metastable °P, , (lifetime
79 ns) and 38, (7=91 us) core ions producing
the lines *P-(n=4) and *S-(n=5). When I, in-
creases by adding He to the target [/, (He) =24.5
eV], aline 3S-(n=4) intensively appears in the
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FIG. 1. Total and delayed (¢ =10 ns) Ne K—Auger-
electron spectra from 1.4-MeV/u Kr!8* impact on
(a) pure Ne and (b) Ne +He(50%) mixture. The lines 3S-
n=4), *P-a=4), and 3§-( =5) arise from selective
electron capture in a second collision of Ned* (132s3S,
1s2p 3Py, ,)-core recoils with target neutrals (He, Ne).
The lines ‘P° and *P° in the delayed spectrum reflect
a subsequent cascade feeding.

spectrum [ Fig. 1(b)] which is explained to re-
sult from a capture of one electron from He into
the n=4 shell of a 3S,-core recoil ion. In this ex-
periment, a population of different angular mo-
menta (1=0,...,n~-1) by SEC is not resolved
from the capture lines because of the small en-
ergy splitting of the outer-shell multiplets.

In the total spectrum lines from 1s2s22S,
1s2p22D° 152p228° ~ 1s%'S° +e~ transitions, from
the K-LM group of three-electron systems and
a minor part from Be-like 1s(2s, 2p)® configura-
tions around 700 eV are observed in addition,
indicating states which are produced by the pri-
mary projectile impact. The metastable 1s2s2p
“Py/,° term (7~8.4 ns)® is the only one which
may contribute to the *P° line in the delayed spec-
trum although it arises from a primary collision.

According to a statistical population by the
heavy-ion impact, the %S, and *P, , terms of the
metastable He-like recoils 152535, 1s2s'S,, and
1s2p®P,, , dominate. From electron capture into
outer shells of such recoil ions a ratio of 9:10
would result for the population of quartet and
doublet terms if the capture cross sections are
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equal for both. The quartet states which cannot
couple to the continuum via electron-electron
Coulomb interaction preferentially decay by E1
cascades feeding the inner-shell states 1s2s2p*P°
and 1s2p%%P° (1 =0.2 ns). Indeed, these cascade
contributions are observed in the delayed spectra
in the *P° and “P° lines [Figs. 1(b) and 2(b) ] having
approximately the same intensity as the capture
lines around 850 eV when the contribution of pri-
mary excitation was taken into account for the
“P° line.

From the exothermicity® of the electron-capture
kinetic energy E = |E, |- |I,| (where E, is the
binding energy of the captured electron) is shared
between the charge-exchanging partners. Conse-
quently, kinematically broadened* Auger lines of
widths

AE ,=[(AE )2 +16E 4, E ym,m,/(m, +m2)m1]1/2
(1)
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FIG. 2. The prompt (+ 5-ns) Ne K—Auger-electron
spectrum induced by Ar!?* —~ Ne exhibits lines from
directly excited Li-like and Be-like states. The de-
layed spectra display contributions of specific capture
and cascade lines from second collisions being sup-
pressed at low target pressure.
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are expected, neglecting the low recoil energy of
the heavy-ion impact. AE is the spectrometer
resolution, E , is the Auger electron energy, and
m,, m,, and m, are the masses of electron, tar-
get ion, and the neutral, respectively. In fact,
such a line broadening (Table 1) is observed in
the delayed spectra for the “cascade lines” *pP°
and *P° agreeing with the exothermic capture
process. From the broadening of the *P¢ line, a
value E ;=30 eV was estimated for Ne®" +Ne
—Ne”* +Ne"’, which is much larger than the
mean recoil energy E,<5 eV due to the heavy-
ion impact. E, is obtained from the small line-
width of the “P° line in the prompt spectra which
is close to the spectrometer resolution. In the
framework of a classical model®*® we may esti-
mate a capture cross section 0,~0,57R*=1.8
x10~' cm?, where the crossing distance R for
electron capture is obtained from E =(¢ - 1)/R.

For lighter projectiles (Ar'?*), the multiple
ionization of Ne target atoms decreases and most
lines are directly produced; in particular the K-
LL lines from Be-like configurations at 680-730
eV appear in the prompt spectrum [Fig. 2(a)].

A remaining contribution from the specific cap-
ture and cascade lines are observed in the de-
layed spectrum [Fig. 2(b)]. Their intensities
(normalized to the intensity of the total spectrum)
are reduced by a factor of 3, compared with
Kr'®* impact. .

At low target pressure [Fig. 2(c)] the 3P-(n=4),
38-(n=5), and “P° lines are strongly suppressed,
consistent with a pressure dependence of a pop-
ulation by a secondary capture collision. Only
a residual contribution of the primary produced
metastable *P,/,° term is found resulting in a
smaller *P° linewidth compared to a width at
higher pressure (Table I), because a kinematic
broadening due to electron capture and a cascade
feeding is missing.

TABLE I. Measured (AE) and calculated [AE, from
Eq. (1)] widths (FWHM) of Auger lines. The uncer-
tainty is £0.2 eV.

Line AE® AE,* AE® AE® AE

‘PO total 2.2 eee e ees
‘pe prompt 1.7 1.6 1.2 1.6

‘po delayed 2.4 2.5 1.9 1.9 2.5° 1.9¢
4pe prompt 2.2 +e+ 1.9 .- 3.2¢ 3,09
‘pe delayed 3.3 - 2.4 3.7¢ ..

4See Fig. 1(a).

“See Fig. 2(b).
bSee Fig. 1(b).

dgee Fig. 2(c).
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FIG. 3. Nitrogen K—Auger-electron spectra from
Kr'® impact on N,. A lower contribution from SEC in
the delayed spectrum and a relative high intensity of
He-like hypersatellites (LL, LM, LN, LO) in the
prompt spectrum may indicate that a fast electron re-
distribution during molecular dissociation is important
for targets of higher atomic numbers.

In Fig. 3, prompt and delayed Auger spectra
from Kr'®* impact on N, molecules are shown,
The lines which are strongly broadened because
of the molecular Coulomb explosion* are attrib-
uted to K-LL, K-LM, and K-LN transitions from
Li-like configurations and to He-like hypersatel-
lites LL, LM, LN, and LO. The delayed spec-
trum is seen to arise from SEC into the =3
shell of N°* ions bearing 1s2s°S and 1s2p°P, ,
core states. The K-LL transitions may reflect
an L-shell population by cascades, similar to
the case of Ne. A weak contribution of the LN
hypersatellite above 450 eV may result from SEC
into the =4 shell of metastable H-like 2s3S ,
core ions. The SEC into the n=4 shell for N**
and the #=3 shell for N°* ions is in accord with
a classical model.*®

The intensity of the delayed spectrum amounts
to 20% compared with the prompt emission which
is less than in the case Kr'®** — Ne (~35%) for
equal target pressures and time windows. This
suggests that a fast electron redistribution during

S6MeV Ar'”*—» SF.

Counts

10mTorr
6000

Total

30001

601 Delayed

0 T T T T
Electron Energy [eV]

FIG. 4. A missing intensity in the delayed fluorine
K—Auger-electron spectrum and many overlapping
lines in the total spectrum from Ar'?* impact on SFg
molecules may demonstrate that recoils carrying
metastable K-hole cores are totally quenched by prompt
electronic rearrangement.

the molecular dissociation after the projectile
impact populates promptly decaying states. It
reduces the number of metastable K-hole con-
figurations available for a second collision. The
relatively high intensity of hypersatellites in the
prompt spectrum which are not observed for Ne
may support this conclusion.

When complex molecules containing many elec-
trons are bombarded by heavy ions, a fast re-
arrangement® of molecular electrons into highly
ionized atoms quenching out the metastables
dominates the population of states. This is dem-
onstrated by the total and delayed fluorine K-
Auger-electron spectra from Ar'?* -SF, in Fig.
4, Many overlapping lines from multiple-electron
configurations govern the total spectrum, where-
as in the delayed spectrum a significant contribu-
tion from SEC in a second collision is missing.
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