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Solvable q-State Models in Lattice Statistics and Quantum Field Theory
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The commutation of transfer matrices of q-state lattice models is studied and solutions
which generalize both the q =2 ferroelectric models and the special q =3 models of Stroga-
nov are found. For cases which are continuously connected to a shift operator, associated
commuting Hamiltonians are given and free energies calculated.
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Recently there has been much interest in the
SU(V) generalizations" of the Thirring model. '
These studies' are made directly in the continuum
and are solved by using Bethe's hypothesis4 in a
manner similar to that used by Yang' and by
Sutherland for the multicomponent 5 -function
gases.

To specify these models fully, a renormalization
procedure must be defined. For the (one-compo-
nent) Thirring model, this was most beautifully
carried out by Luther' and by Luscher, ' who put
the field theory on a spatial lattice and related it
to the X-F-Z model solved by Baxter. ' In partic-
ular, this renormalization is powerful enough to
demonstrate spontaneous mass generation out of
the (bare) massless model. 'o For the multicom-
ponent case, the corresponding renormalization

on the lattice has not been carried out. Indeed
the work of Sutherland" indicates that a straight-
forward generalization of the Heisenberg-Ising
model related to the field theory will not in gener-
al be solvable on the lattice. Accordingly, it is
the purpose of this Letter to initiate the study of
the lattice renormalization of these field theories
by determining the q-state lattice models which
may be solved by the techniques of commuting
transfer matrices.

For q = 2, a complete study of commuting trans-
fer matrices exists for the eight-vertex model.
I generalize this to a model on a M &&M square
lattice with periodic boundary conditions by allow-
ing q states (or colors) on each bond and by re
quiring conservation of color at each vertex. Then,
in the notation of Fig. 1 the Boltzmann weight S'
=e '~ of a vertex specified by A. , A. '; a, e' is

A. A.
'

R (nn') =W„g"5ggi5„„i+Wan„."o„q5„,~. + W„„,'5„~,5

where by definition 8'„' =W „"=0. There are in
general Sq' —2q arbitrary vertex weights.

The transfer matrix is constructed from R(n,
n') considered as a q && q matrix as

"a&2'" &gl&X'&2 "'&sr

= Tr[R (n„n~')R (n„n, ') ~ R(n„, nn')] (2)

and the lattice partition function is

Z = Tr(ru).

Note that the left shift operator

(4)

is given by Etl. (2) with W„B'=5„s, W„s"=0, and
%~8' = 1 —6~8.

I search for sets of weights, (W] and (W], such
that

trary A. ,A. '; p. , p, '; n, e',
~xx. R x x. (n nfl)RP P (nil nl)

n", X,",p"
R~~ (n n")R "~ (n", n)X'„" i.~~(6)

~tt ytl p It

Thus there are q equations to satisfy.
The matrix X„„~may be chosen to have the

and by Etl. (2) it is sufficient to construct a non-
singular qm&& q matrix X„„., such that, for arbi-

FIG. 1. Labeling of the bonds of a single vertex used
to write the single-site transfer matrix of the text.
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same form, Eq. (1), as R; then we find the fol-
lowing two special types of solutions.

(I) Generalized six-vertex models, where

Wp '=0, Wp "=W p",

or the alternate set with E—r; there are two
cases: We have case (IA) W" —W" —W' =0 (15)

there are several cases: For case (IIA) we have
O' =0; (14)

this corresponds to the q-state generalization of
the three-state models of Stroganov, ' of which
there are two subcases: We have subcase (IIA1)

(w,.")' (w,.")'
lV "W " W

(s)

and the corresponding barred equation; and sub-
case (IIA2)

w" = w" (w" —w')lw'+ (q —2)w'i '

S"~~ W~~

8
pp Wpp

(9)

or the alternate set with l -r. These constitute
3g(q —1) restrictions on the W's; therefore this
is a q-parameter family of commuting transfer
matrices, of which one parameter is a trivial
overall scale. For case (IB) we define the index-
independent quantities K and K by

and the corresponding barred equation. In both
subcases there are two free parameters, of
which one is the trivial scale. For case (IIB) we

ha, ve

8" 0'
here also there are two subcases: We have sub-
case (IIB1) when

8'"10 and W'0'

(w..")' . (w. „")' Z.
QJ cW 4 P ~ gf~ g 7

p& op pa ap

then there is commutation if

W" = T4'"+W'+ W (19)

or the alternate set with r-l; then there is com-
mutation if

and

2w'(w" +w') =+ (q —2)w" w'. (2O)

a,nd

w, .'/w„" = w, ."/w„' = c... This is a two-parameter family. We have sub-
case (IIB2) when

W" W' = 0. (21)

=K+ 1, (12)

g ~=W" 8' "=W
pp 7 p~

"=W'" O' ' =W''
pQ 0 p&

where the + sign may depend on y, p, and a; and
simila. r equations hold with W's —W's and K-&.
For a given set of c 's, restricted by equations
of the form cz,c,~zc»,c,&~=(K+ 1)(K+ 1) ' ob-
tained from Eqs. (11) and (12), we have a com-
muting family with q+ 1 arbitrary parameters for
general q.

These cases generalize the q =2 ferroelectric
model" solved by Bethe's hypothesis.

(II) Index-independent models, where (with p
vo)

then there is commutation if, in addition, Eq.
(19) holds. This is also a two-parameter family
and may be obtained from case (IB) by directly
making the specialization Eq. (13).

For the remainder of this note I concentrate on
type-II solutions where there is a two-parameter
family which contains the left (or right) shift op-
erator, Eq. (4), as a special case. For these
cases we may find a commuting Hamiltonian by
taking the logarithmic derivative of the transfer
matrix with respect to the one nontrivial param-
eter at the shift point. We may also find one-
variable recursion relations for the lattice free
energy by the method of Stroganov, ' which may
then be explicitly solved. The cases with (q+1)-
or q-parameter families must be dealt with by
different techniques and will be treated else-
where. The results are summarized as follows:

Subcase (IIAI).—The associated Hamiltonian is

N a

~ —p[g z(AzP" AzP+i Ago AP )+ p AP AP ] (22)
J=l p&a p =1
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where the A's are a basis set of q& q matrices
with elements

(A~') „=b„b„, (AP "),, = b, b,.+ b,.b,.„
(A]'"),, = -i(b, ,b,.—b, .b„) .

The recursion relation is

1+(q -1)b [1+(q —1)b](1—b)
1+(q —2)b 1+(q —2)b

where b = W" /W". The solution is
lj2

f(b) = (q-2)-"g —,u' a, u', (25)(1 +x) u' u'x

where

R(qla)= n(1
" „),

b+u '(q —2) ' '
b —u(q —2) 'I' '

u —2
[(q 2) 2&2 + (q + 2) 22 2 ]

Subcase (IL42).—The Hamiltonian is

(28)

(27)

(28)

X; = P P '(A '*A -['"- A ["A ~")+ P(q -1)A, 'Ii y+, .
J=l p« p=1

From the recursion relation

f (b)f( 1 + ( —1)b) —[ 1 + (q —1)b] (1 —b)

1+(q —2)b

we obtain

(q —1) (q —2) 1f(b)=( )R( )2 (q —1)R
(

—

)
(q —1)),

x = b+(q —2)-'.
Subcase (IIB1) We find.—the Hamiltonian functions

(29)

(30)

(31)

(32)

N a'

22'= Z +(2 —4)(q —2) ' P Af AJ,', + 'P [ ', q(q —2) ']Af-'*Af, , +[-,'+(2 —2)"'*]A ~"A P "I) (22)
J=l P=l P~~

The recursion relation is

f(c)f(c ~b) =c[(c+b) —(c+b)-'],
where

b = (q —2)/2,

c = W'/W",

giving

r'(-,'*c/2b) r(1*(c—1)/2b) r (1+(c +1)/»)
r2(1+c/25) r]( —,'~(c —1)/25) r(—2+(c+1)/25)

Subcase (II').—The Hamiltonian is

(35)

(38)

(37)

J=l p& o

The recursion relation is

[1+(q-1)b](1- b) ( b

1+(q —2)b ],(1+qb)& '

where

with solution

P=1

(4o)

(38)

Detailed derivations of all the above results
will be published elsewhere. I am indebted to
Professor Barry McCoy and Dr. Jacques Perk,
without whom this work could not have been com-
pleted. This work was supported in part by the
National Science Foundation under Grant No.
DMR-79-08556.

r (1/qb) r([ 1 + (q —2) b] /qb)
r((1 —b)/qb) I ([1+(q—1)b]/qb)

' D. J. Gross and A. Neveu, Phys. Hev. D 10, 3235
(&974).

631



VOLUME 46, NUMBER 10 PHYSICAL REVIEW LETTERS 9 MARCH 1981

N. Andrei and J. H. Lowenstein, Phys. Rev. Lett. 43,
1698 (1979), and Phys. Lett. 90B, 106 {1980); A. E.
Arinstein, Phys. Lett. 95B, 280 (1980); A. A. Belavin,
Phys. Lett. 87B, 117 (1979).

W. E. Thirring, Ann. Phys. (N.Y.) 3, 91 (1958).
H. A. Bethe, Z. Phys. 71, 205 (1931).
C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967).
B. Sutherland, Phys. Rev. Lett. 20, 98 (1968).
A. Luther, Phys. Rev. B 14, 2153 (1976).
M. Luscher, Nucl. Phys. B 117, 475 (1976).
R. Baxter, Phys. Rev. Lett. 26, 832, 834 (1971), and

Ann. Phys. (N.Y.) 70, 193, 323 (1972).

B. M. McCoy and T. T. Wu, Phys. Lett. 87B, 50
{1979).

B. Sutherland, Phys. Rev. B 12, 3795 (1975).
For a systematic study and review, see P. W. Kaste-

leyn, in fundamental I'xoblems in Statistical Mechanics
III, edited by E. G. D. Cohen (North-Holland, Amster-
dam, 1975), p. 103.

E. H. Lieb, Phys. Rev. Lett. 18, 1046 (1967), and 19,
108 (1967); B. Sutherland, Phys. Rev. Lett. 19, 103
(1967); B. Sutherland, C. N. Yang, and C. P. Yang,
Phys. Rev. Lett. 19, 588 (1967).

Yu. G. Stroganov, Phys. Lett. 74A, 116 (1979).

632


