
VOI.UMZ 46, NUMBER 10 PHYSICAL REVIEW LETTERS 9 MARCH 1981

1 get r, „&2.25x10»]»'.
Thus whatever the cooling method, a machine

operating at r ~ 10"must overheat by hundreds of
degrees Kelvin and destroy itself (a conservative
time scale is 10 ' sec). Therefore, 10" opera-
tions/sec is a firm upper bound on the speed of
an ideal digital computer. Any realistic machine
would fall short of this by orders of magnitude.
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It is shown that, for systems which enter chaos throUgh period doubling bifurcations,
the integrated noise power spectrum in the chaotic regime behaves as N(r) =No(r -r, )
with 0 = 1.5247. .. . Furthermore, the existence of a new universal constant which de-
scribes the scaling behavior of the average bandwidth in the strange attractor is re-
ported. These results are directly applicable to experiments probing the onset of tur-
bulence in physical systems.
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A number of physical systems, such as stressed
fluids, high-temperature plasmas, and Josephson
junctions have been observed to undergo a transi-
tion into a turbulent regime characterized by
broadband noise in the power spectra. A possible
explanation for these phenomena is that the phase
trajectories for the complete nonlinear many-
body problem enter a low-dimensional region of
phase space containing a strange attractor. A
strange attractor is a region in phase space such
that nearby trajectories must enter it but once
inside they diverge from each other. Hence we
arrive at a description of turbulence involving
only very few degrees of freedom. The effective-
ly stochastic motion which these few degrees of
freedom undergo gives rise to the observed noise
in the power spectra. One common route into this
turbulent regime is a universal cascade of period
doubling bifurcations which occur as some con-
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trol parameter is varied. ' ' This cascade can be
easily understood when, through the construction
of return maps associated with the Poincare
maps, the dynamical system is mapped onto one-
dimensional (1D) recursion relations which pos-
sess the same bifurcation structure. '

Recently, it has been shown that once in the cha-
otic regime, the Lyapunov exponent, which meas-
ures the rate of divergence of nearby trajectories,
behaves very much like the order parameter of a
phase transition near the critical point, i.e. , it
obeys a universal scaling law. ' This development
allows, in principle, for the application of tech-
niques developed in the study of critical phenome-
na to the onset of turbulence in these nonlinear
systems.

Appealing as these ideas might be, they suffer
from the fact that one cannot directly measure
Lyapunov exponents or discern the topology of at-
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f(x) =rx(l -x). (2)

For such a map it is well known' that, as the con-
trol parameter r is increased, a cascade of per-
iod doubling bifurcations takes place for r =r„,
n =1,2, 3, . .. , until a value r =r, is reached be-
yond which chaotic behavior ensues. Beyond r„
a reverse set of bifurcations, or band mergings,
occurs for the values r =r„, n =1,2, 3, ... .' More-
over, at r =r„ the action of fi' ~(x) on any fixed
band is completely chaotic, its invariant measure
being a scaled down version of that of the map f(x)
with r =4.

If the iterates generated by the map are denoted
by x~=f~"~(xo), we can represent the sequence
x, (for r =r„) by

x, =PA, exp[i((u, . )k]+n(k)

with

A, = lim(l jN) P exp[ —i((,)n]x„,
N

(4)

where the frequencies ~, are integral multiples

tractors in experiments dealing with physical sys-
tems. We therefore believe that what is needed
is a theory of the power spectra associated with
strange attractors above the chaotic threshold.

This paper presents the main results of such a
theory. In particular, we show that, for systems
which enter the chaotic regime through a sequence
of period doubling bifurcations, the integrated
noise power spectrum in the chaotic regime,
N(r), behaves as

N(r) =N (r —r, )

where o =1.5247. . . . Furthermore, we report the
existence of a new universal constant, P, associ-
ated with 1D maps displaying bifurcation cascades,
which describes the scaling behavior of the aver-
age bandwidth in the strange attractor. Our re-
sults, which are in very good agreement with nu-
merical simulations, should be directly applica-
ble to experiments probing the onset of turbulence
in a variety of physical systems.

It has been shown that the return map for dy-
namical systems displaying period doubling bi-
furcations, such as anharmonic systems, ' corre-
sponds to simple recursion relations of the form
x„+,=f(jc„), where fg) has a single parabolic max-
imum. Because of the universality of the bifurca-
tion structure of these 1D maps, we may consider
the simplest one defined on the inverval [0, l]
(with 0 r 4), i.e.,

of 2v/2" and n(k) is the noise term generated by
the deterministic map. Since n(k) is 3. scaled
down version of the noise obtained from the map
f(x) with r = 4 we can write'

lim Z
-' P n(t +k)n(t ) = g '5(k) (5)

Therefore, the power spectrum in the chaotic
regime will consist of a set of instrumentally
narrow peaks sitting on top of a broadband noise
background. The existence of these 6-function
peaks in the chaotic regime are a reflection of
the time-translation-invariant property of the
driving term in the original dynamical system. '

In order to proceed further in our analysis of
the broadband noise we first establish a new uni-
versal property of 1D recursion relations with
period doubling bifurcations. We have found that
for highly bifurcated orbits in the chaotic regime
(or r =r„with n large) the root-mean-square
bandwidth obeys the scaling relation

w p-n

with P =3.2375. .. .' We believe that this new uni-
versal constant is independent of the constants o.
= 2.5029. . . and 6 = 4.6692. . . introduced by Feigen-
baum. " It should be noted that Eq. (7) also de-
scribes the scaling of the average spacing of the
most highly bifurcated pairs in the periodic re-
gime with r =r„.

The experimental quantity of interest in the
chaotic regime is the integrated power density
N(r), which is given by

N(r) = J d~ ln(~) I', (8)
where we have subtracted the periodic structure
given by the ~ functions. The range of integration
is 0 &~ &~&, where ~„ is the driving frequency in
the original system. For discrete maps, the
driving frequency is 2m. To determine the scaling
behavior, we use an argument similar to that
used by Huberman and Rudnick in their study of
Lyapunov exponents. ' First we notice that, as r
goes from r „ to r„,~ in the reverse bifurcation se-
quence, Eqs. (5), (7), and (8) imply that

N(r„„)=N(r-„)p-m.

Furthermore, since for large e, the value of r
627

with W' a, constant proportional to the average of
the square of the width of one of the 2" bands.
The power spectrum G(+) is simply calculated
from Eq. (3). We thus obtain

G(~) = Ix(~) I'= Ig&, ~(~ —~, ) +s(~) I'.
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=r„ for which the nth reverse bifurcation, or band
merging, takes place behaves as'

x„=r, +const' ",

we obtain, from Eqs. (9) and (10),

N (r) = const(r -r.) ',

(10)

with a a universal exponent which is given by
v =21n(P)/ln(5) =1.5247. .. . Therefore, the total
noise power, which in turn defines an effective
noise temperature, T,«, obeys a scaling law
near the chaotic threshold.

In order to test these predictions we have meas-
ured the power spectrum associated with the 1D
map of Eq. (2). To within the accuracy of our
calculations we obtained o =1.527+'0.005, in ex-
cellent agreement with the theoretical value. We
thus believe that experiments in systems display-
ing period doubling bifurcations will observe the
scaling behavior given by Eq. (11).

Our arguments rest on the existence of the spe-
cial points r„at which the bands are completely
mixing. Since one may question the validity of
our prediction for ~4~„because of the existence
of highly bifurcated shallow periodic attractors,
it is important to consider the effects of external
noise. As has been recently shown~~ the addition
of small amounts of external noise to the dynam-
ical system results in the disappearance of these
shallow attractors. Therefore, experimental
determinations of our scaling predictions will un-
avoidably interpolate smoothly between the spe-
cial reverse bifurcation points, leading to a sim-
ple determination of the power-law behavior pre-
dicted by Eq. (11).

In summary, we have shown that (a) the power
spectrum of the chaotic phase of period doubling
systems consists of 6 functions and broadband
noise, (b) the average noise scales near onset

with a universal power law, and (c) our theoreti-
cally determined exponent agrees with our nu-mericall

experiments.
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