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From thermodynamic and causality considerations a general upper bound on the rate at
which information can be transferred in terms of the message energy is inferred. This
bound is consistent with Shannon's bounds for a band-limited channel. It prescribes the
minimum energy cost for information transferred over a given time interval. As an ap-
plication, a fundamental upper bound of 10 operations/sec on the speed of an ideal digi-
tal computer is established.
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To transmit information costs energy: Every
message is associated with a material object or
radiation, and must thus be accompanied by some
energy. Can this energy cost be reduced to arbi-
trarily low values by technical innovation? That
the answer may be negative is suggested by Shan-
non's classic bounds on the rate of information
transfer through a communications channel. ' ~

However, these are expressed in terms of the
channel's bandwidth and the signal-to-noise ratio.
For my particular question and many others of
physical interest, a bound expressed directly in
terms of the message energy would be preferable.
Just such a bound was proposed by Bremermann'
on the basis of one of Shannon's formulas. The
obscurity in which his proposal has remained is
perhaps due to the confusion in his arguments:
He identifies Shannon's noise energy with the en-
ergy uncertainty dictated by 4E &t & S. Yet the
fact that a time limited waveform must have a
spread in frequency (from which follows &E &t &8)
is actually unrelated to whether a channel is
noisy or not in Shannon's sense. ~ Fortunately, it
proves possible to derive a bound similar to

Bremermann's, but whose range of applicability
transcends that of Shannon's bounds, from ther-
modynamic and causality considerations. I now
describe the general idea and implications for
the energy cost of information transfer. Further
details and examples will be deferred to a later
publication.

I start from a recent result: The ratio of en-
tropy to total energy in the rest frame, S/E» of
a system bound in space is less than 2wkh 'c 'R
with R the effective radius of the system in its
rest frame. This result may be inferred from
the second law of thermodynamics as generalized
to systems involving black holes. ' In this ap-
proach Eo is interpreted as the precise energy,
while for nonspherical systems the meaning of R
is obscure. An alternative approach' derives the
result for systems of massless qua~turn fields
directly from statistical physics. In this second
approach Ep is interpreted as the statistically
mean energy, and R as the radius of the sphere
which circumscribes the system. I here adopt
the latter interpretation, and assume the bound
on S/Eo to be generally valid. I now recall that
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if a given system's entropy has a maximal value
S, then by using every one of its internal states
as a symbol, one can code in it information up
to an amount S(kln2) 'bits {binary digits). ~ Thus
the storage capacity of a system with mean ener-
gy E, which can just be enclosed in a sphere of
radius R is less than 2m(hcln2) 'EP bits, an in-
teresting result in its own right.

A message is in essence a package of matter or
radiation (packet of electromagnetic waves in a
transmission line, laser pulse in space, burst of
relativistic electrons. ~ ~). First one assumes
that it moves slower than light so that it has a
rest frame. The receiver which ultimately de-
tects it can recover from it no more than the in-
formation I it contains. The bound implies

I&2m(yhcln2) ~ER,

where y is the Lorentz factor corresponding to
the package-receiver relative motion, and E is
the package energy in the &eceive~'s Lorentz
frame. The rate of information transfer (average
rate of information acquisition by the receiver)
is just I/7, where ~ is the time that elapses in the
receiver's frame between the arrival of the pack-
age's front and the instant the last detected signal
is conveyed to the receiver's "memory. "

Now ~ & max(T, t) where T is the time for the
full length of the package to impinge on the re-
ceiver, as measured in the latter's frame, and
2t is the light travel time across the largest
transverse dimension of the system I-, as seen
from the receiver [signals cannot be conveyed
from every detecting element to the memory—
wherever located —in less time than t =L,(2c) ~].
Evidently T =L, (vy) ' where L, is the longitudinal
dimension (along the line of flight as seen by re-
ceiver) of the package in its own rest frame, and
v is the package-receiver relative velocity. For
given package geometry and receiver disposition,
T decreases as v increases, but t remains con-
stant. Hence the smallest possible & can be at-
tained for v —c (and for special shapes also for a
range of v below c). To relate ~ to R without en-
tering into details about ihe shape, I imagine the
parallelepiped with edges of length 4 =L„II =L„
and C =L„which just boxes in the package. The
sphere which circumscribes this parallelepiped
cannot be smaller than that which circumscribes
the package; hence L,2+2I-,' - 4R'. Since I am
interested in v near c, I may assume that ~
&I.,(2c) '&L, (vy) '. Combining all these inequal-

ities yields

» 2R(v'y'+8c') '" (2)

E/I& 0 ln2/vT, (4)

which expresses the energy cost per bit for a
message received and recorded over time ~. In
interpreting (3) and (4) one must remember that

I now take v = c to obtain the bound ~ & 2R(yc) ~ on
the shortest possible ~. Dividing the earlier
bound (1) by this last one, I get my basic result

I (zE/h ln2, (3)

where I is the average rate of information trans-
fer in bits per second.

Bound (3) differs from that proposed by Bremer
mann by a numerical factor as well as in interpre-
tation. Its range of applicability far exceeds that
which Bremermann claimed for his because (3) is
obtained without recourse to Shannon's bounds.
Thus, for example, (3) applies to a hypothetj. cal
communication system which employs neutrinos
although none of Shannon's results are then rele-
vant because the neutrino field is not itself meas-
urable. Although derived for packages which
have a rest frame, bound (3) should also hold for
packages traveling exactly at the speed of light.
This follows because (3) is good for v arbitrarily
near c. Also, assuming that for v = c (3) is not
valid leads to contradictions. For example, sup-
pose a message coded in a laser pulse satisfies,
in a particular frame, I& mE(@ ln2) ' when it prop-
agates in vacuum. If the pulse then gradually
enters a nonabsorbing medium with index of re-
fraction 1+a (with e «1) at rest in our chosen
frame, its velocity becomes smaller than c, so
that (3) becomes applicable. However, since E
cannot have increased, this can only happen if I
decreased or the minimum 7 increased. But if the
transition is sufficiently gradual, no information
should be lost. Likewise any change in & from
the change in medium must be of O(e) and can be
made arbitrarily small. Hence, our original
supposition was wrong, and in fact I &wE(kln2) '
in vacuum. The equality would be attainable only
if for v & c, I can approach arbitrarily near
~E(h ln2) ~. In fact there is evidence that the
thermodynamic bound which I used to obta, in (3)
cannot be approached closely. ' Thus (3) must be
a strict inequality for all messages, lightlike or
not, and in fact it may be possible to obtain a
general bound tighter than (3).

Our bound may also be rewritten in the form
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E and 7 are measured in the frame of the re-
ceiver. If, as is the case in radio communica-
tions, only a fraction of the transmitted energy
is received, or if transmitter and receiver are
in relative motion, or at different gravitational
potentials, one may relate I to the transmitted
energy by scaling T and E by the appropriate
solid-angle and red-shift factors. The moral of
(3) and (4) is that rapid reception of information
ultimately requires higher energy reception, i.e.,
higher energy transmission, and/or greater re-
ceived- to transmitted-energy ratio. In short,
fast information is energy expensive.

A well-known rule of thumb in the theory of
communications via electromagnetic channels
(the Hartley-Nyguist law)2'' equates tbe maximal
I with the bandwidth bf (in hertz) of the channel.
This rule is consistent with (3). In fact, in a
band-limited channel the meum photon energy will
generally exceed &k&f=~h&f; since there is at
least one photon per message, E/h) zbf. Thus
tbe bound (3) is more generous than tbe rule, a
further indication that it may be possible to im-
prove my bound. The unprecise Hartley-Nyquist
rule has been superseded by Shannon's bounds on
I which, in particular, take account of the role of
noise in limiting I. I shall show in a later publi-
cation that (3) is always consistent with Shannon's
bound whenever the latter is applicable.

An example which illustrates the power of (4)
concerns the maximal conceivable speed of a
digital computer. The number of elementary
operations that such a machine can perform per
second, ~, cannot exceed cD ~ where D is the
characteristic dimension of the "circuits. " Pre-
sumably a computer must be made of atoms, and
so D cannot be reduced arbitrarily. However, it
is not clear how many atoms are the minimum
for a futuristic computer (10' or 10"V) so that
this line of reasoning cannot predict a precise
maximal r. Here (4) may be used to resolve this
difficulty. In performing a simple arithmetical
operation, the machine typically transfers infor-
mation, specifying a couple of numbers over a
distance D. Now, to specify a nine-digit decimal
number takes 30 bits (2'0=1&&10'), so that the
machine transfers about 60r bits/sec. According
to (4) this costs at least 1.4x10 "r ergs/opera-
tion since the relevant ~ here must be shorter
than r ~ sec if the machine is to carry out one
operation on the basis of results from the preced-
ing one. If, as seems probable, the energy ac-
companying each "message" cannot be recycled,
the power dissipated, P„, must be at least 1.4

&& 10 28r' ergs sec ~ (this is unrelated to resistive
heating which can be eliminated). Thus for large
r the machine has an "overheating" problem.

The biggest allowed r is determined by the
largest P& which can be offset by available cooling
mechanisms. . For the nearly microscopic ma-
chines I have in mind (r =3 x10" implies D & 10 '
cm) cooling by forcing a Quid through the "cir-
cuits" is out of the question. The other options
are cooling by heat conduction to the periphery
of the circuits and by radiation from the atoms
and molecules of the computer. To cool efficient-
ly by conduction one would like to make the ma-
chine in the form of a thin plate of thickness d
and area of order D'. The cooling rate (ergs/sec)
is then P,=~D~d '&T, where &T is the typical
temperature differential inside the machine and
I( the thermal conductivity. Now one knows that
~ = ~cvX where v and A. are the rms speed and
mean free path of the heat carriers (phonons or
electrons) and C is their specific heat per unit
volume. ' Concentrating first on the I(. from pho-
nons, one knows that v is about the sound speed
and hence v &5 &&10' cm sec ~ for the known solids
under ordinary conditions. Now A. is set by vari-
ous scattering mechanisms, but in any case X &d
(DeHaas-Biermasz effect). ' It is well known that
each atom in -a solid contributes a maximum of
3k to the phonon heat capacity. In ordinary solids
there are - 10 3 atoms/cm'. Hence C &4.14x 107

erg 'K ~. I recall that D & cr '. Hence P, & 6.2
x1036$~ ' erg sec ', where I have taken &T
&100'K, a reasonable figure; the factor $ lumps
the effects of my various approximations. I ex-
pect it to be of order unity. If instead ~ is due to
electron conductivity, v must be interpreted as
the Fermi velocity (2kT &/M)~~', where T~ is the
Fermi temperature and M the (effective) elec-
tron mass. The heat capacity per electron is'
~w'kT/TF. As before, & &d. The lowest TF's of
known conductors are 2&&104'K. Taking M=9.1
&&10 2' g, T &500'K, and b, 2'&100'K, I find that
the previous bound for P, is still valid if one
takes $ =6.4. Setting P, =P, gives r, „&2.6
~ 1015(1'

Cooling by radiation will be most efficient in
the optical regime where the Einstein coefficients
and quanta energies are largest (=10' sec ' and
3x10 ~' erg, respectively) from among the radia-
tive modes, one can hope to couple efficiently to
the heat source. With 10"atoms jcm' and a
volume =D', one gets P, &8. 1&&1 '0(0r ' erg sec ',
where again $ is a factor of order unity correct-
ing for my approximations. Comparing with P„,
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1 get r, „&2.25x10»]»'.
Thus whatever the cooling method, a machine

operating at r ~ 10"must overheat by hundreds of
degrees Kelvin and destroy itself (a conservative
time scale is 10 ' sec). Therefore, 10" opera-
tions/sec is a firm upper bound on the speed of
an ideal digital computer. Any realistic machine
would fall short of this by orders of magnitude.
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It is shown that, for systems which enter chaos throUgh period doubling bifurcations,
the integrated noise power spectrum in the chaotic regime behaves as N(r) =No(r -r, )
with 0 = 1.5247. .. . Furthermore, the existence of a new universal constant which de-
scribes the scaling behavior of the average bandwidth in the strange attractor is re-
ported. These results are directly applicable to experiments probing the onset of tur-
bulence in physical systems.
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A number of physical systems, such as stressed
fluids, high-temperature plasmas, and Josephson
junctions have been observed to undergo a transi-
tion into a turbulent regime characterized by
broadband noise in the power spectra. A possible
explanation for these phenomena is that the phase
trajectories for the complete nonlinear many-
body problem enter a low-dimensional region of
phase space containing a strange attractor. A
strange attractor is a region in phase space such
that nearby trajectories must enter it but once
inside they diverge from each other. Hence we
arrive at a description of turbulence involving
only very few degrees of freedom. The effective-
ly stochastic motion which these few degrees of
freedom undergo gives rise to the observed noise
in the power spectra. One common route into this
turbulent regime is a universal cascade of period
doubling bifurcations which occur as some con-
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trol parameter is varied. ' ' This cascade can be
easily understood when, through the construction
of return maps associated with the Poincare
maps, the dynamical system is mapped onto one-
dimensional (1D) recursion relations which pos-
sess the same bifurcation structure. '

Recently, it has been shown that once in the cha-
otic regime, the Lyapunov exponent, which meas-
ures the rate of divergence of nearby trajectories,
behaves very much like the order parameter of a
phase transition near the critical point, i.e. , it
obeys a universal scaling law. ' This development
allows, in principle, for the application of tech-
niques developed in the study of critical phenome-
na to the onset of turbulence in these nonlinear
systems.

Appealing as these ideas might be, they suffer
from the fact that one cannot directly measure
Lyapunov exponents or discern the topology of at-


