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The mean-field theory of an antiferromagnetic superconductor is solved and some fluc-
tuation effects are discussed. In contrast to claims of other authors, it is found that the
pairing is of the usual BCS type, &= (&g ~ C g ~ ). Results for the gap parameter &(&)
and H, (T) are presented. The latter is similar to the measured II~2(T). The ratio A(0)l
&c and the (nonmonotonic) temperature & dependence of H~ and ~(&) are shown to deviate
markedly from BCS theory.

PACS numbers: 74.20.Fg, 75.50.Ee

The recent discovery of antiferromagnetic (AF)
superconductors' has revived interest in the prob-
lem of coexistent magnetic and superconducting
order. In this Letter we present a mean-field
theory and discuss some fluctuation effects for a
system of superconducting electrons interacting
with antif erromagnetically ordered localized
spins. While we treat a somewhat idealized three-
dimensional system, our qualitative results are
relevant to the Chevrel-phase and rare-earth rho-
dium boride AF superconductors.

One purpose of this paper is to establish the na-
ture of the (most favorable) Cooper pairs: We
find, in contrast to a previous claim, ' that the
order parameter is of the usual BCS type,
(Ci, ~ t tC k it) =6, =—A. Another aim is to calcu-
late the thermodynamic variables 4, T„and H, .
In particular, we find a nonmonotonic tempera-
ture T dependence of & and H, . The latter quan-
tity, which is related to the difference of the free
energies in the normal and superconducting phas-
es, is found to have a T dependence rather simi-
lar to that of the measured upper critical field
H„ (Ref. 3) for the Chevrel-phase AF supercon-
ductor s.

The importance of doing a mean-field calcula-
tion should be emphasized. First, it is essential

in order to properly characterize the Cooper
pairs. Second, it is a necessary first step in any
treatment of fluctuation effects. Using mean-field
theory as a basis, we can then obtain the Eliash-.
berg-like equations for the renormalized gap func-
tion ~ and effective mass from which we derive
the supercondueting density of states and an effec-
tive spin-flip lifetime 7, . We wiQ discuss this
briefly at the end of this paper and in more detail
in a subsequent work.

Our Hamiltonian contains the d-electron kinetic
energy, the d-electron-f-electron exchange inter-
action O'"I (assumed constant for simplicity), and
the d-d interaction arising from the phonons. In
our mean-field theory we replace the Fourier
transform of the f-electron spin operator S, by a
temperature-dependent molecular field H

J'~(So)/2N, wh-ere Q is the wave vector of the
antiferromagnetic order. The electron-electron
term, which is written as

V gk qCp+q g Ck q a Ck o
k, k', q,
a, o'

allows electron pairing with q =0 and q =+ Q, all
of which must be included in order to proceed in
the most general way.

614



VOLUME 46, NUMBER 9 PHYSICAL REVIEW LETTERS 2 MWRcH 1981

Our mean-field Hamiltonian thus becomes

~ work on the charge-density wave. ' Simple analyt-
ic expressions can be obtained only in the one-di-
mensional limit. In this case, we take Q =2kF so
that e $(- —e $+Q~ for k near -kF We have
looked for solutions for arbitrary 4 and 4„.
In the case 4 =- 4 , which is the only one which
can be easily handled analytically, we have

~, = Z V{[1-2f(E.)]/2E.j(~,+a~„),
kt

4, = Z V([1—2f(E,)]/2E,j (a, +ALII ), (3b)

where

E.=[(~,+ca,)'+(~, +or„)']'"
60$) =Q(C k~1 )Ck~ ))Vk~i k~

~ k k~q7' (2a) and f(E) is the usual Fermi function. Here we
have adopted the BCS step function potential (of
amplitude V) for Vkk q, so that the summations
in Eqs. (3) are restricted to within ~, of EF.
When 4 =0, one can derive the same equation
for 1', either by using Eq. (3b) or by considering
the instability of the particle-particle vertex func-
tion. This latter approach was incorrectly ap-
plied in Ref. 2. A general detailed numerical
study suggests that the case 4, &0, w1th 4g =4
=0, Q s 0, is the only allowed nontrivial solution
of Eqs. (2), so that in one dimension the usual
BCS pairing is preferred. Physically, this is a
consequence of the fact that Q =2kF is large com-
pared to the inverse coherence length t, ', so
that Cooper pairing of this large momentum Q is
highly unfavorable. Mathematically, for Eq. (3a)
this arises because the d&~ integration can be
transformed to a new variable d(ok+ &o) without
significantly changing the limits of integration,
+to, Then th.e right-hand side of Eq. (3a) vanish-
es. More generally, this can be seen with use of
the Green's function analysis discussed below.

Based on these observations, in the three-di-
mensional case we have numerically solved our
equations with 6+ =4 @=0. The equation for 60
—= 4 is

b.q(R) =2+'(Ck' kC k'+Q i) V k'+Q k' k&+k~ (2b)
k'

=2K'&C-k - Q, ~Ck', ~) V7, -7 - Q, k- k"
k'

(2c)

The anomalous pairing with QIO is presumed
to take place only in region I. The inclusion of
these terms allows us to consider the "new pair-
ing state" proposed in a recent Letter by Machida,
Nokora, and Matsubara' on the basis of some sug-
gestions by Baltensperger and Strassler. ' Their
pairing may be written as a particular linear com-
bination of the pairings in Eqs. (2). However, we
have found that the Machida, Nokora, and Matsu-
bara order parameter leads to inconsistencies,
because, as Baltensperger and Strassler state, '
"only the interactions between the chosen pairs
are retained. *' Since the other discarded interac-
tions are nonzero, this assumption leads to a vio-
lation of the self-consistent gap equations given
by Eqs. (2).

The solution of Eqs. (2) involves the diagonaliza-
tion of a 4X 4 matrix, as in the case of previous

= ZekCk ~ Ck ~- 4 FIo ~(Ck ~ Ck+Q ~+ Ck+Q

—QEOkCk
~ ) C 7, ) -Q'b, q(R)Ck+g t C

k k

o(R)Ck ) C k Q) +CC
k

The prime on the summation indicates that we
are dealing with a restricted region of % space;
namely, that region (called region I) near the
Fermi surface (FS) in which both eg~ and eg+Q~
are within the BCS cutoff frequency, ~„of the
Fermi energy, EF. Here we will ignore the very
small additional contribution to the magnetic
mean field which comes about from a factoriza-
tion of the phonon-induced electron-electron inter-
action. %'e treat H+ exactly only in region I,
since its effects are most significant there. In
the remainder of the FS (called region II), H
leads to only weak perturbative corrections, which
we ignore here. ' The order parameters are de-
fined by the self-consistent equations

a =g Val(x', y, +,. t, )[1—2f (E,)]j+Q V(h/2E)[1 —2f (E)], (4)
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where E = (e„'+d ')"' and the index i =+ or —,corresponding to the eigenvalues

E, =(a(e,' +6 -„,o ') + 6'+Ho'+ —,'{(6,' —e- -„,o ')'+ 4Ho'[(6-, + t -„,o )'+ 45,']}"')"',
w'ith

x) = (N)) Ho(e )), +Q) 'Ey 2Ei)y g; (N;) Ho[A, -Ho +(e~+E;)(e )&+o)+E,)],

z; = (N)) [Ho —6 —e„+E; ]i t; = (N)) [Ho (e~-Ei) —6 (e g+g)+E;) —(e)~„o) +E;)(e„-E; )],
(6)

where N, is chosen so that x 6'+y, '+g, '6'+t, '
= 1. In order to perform the indicated integra-
tions over regions I and II, we assume that when
H Q 0, the FS is spherical: cq = k —E' p. The fac-
tor ~,/kFQ for Q &2k~ thus denotes the relative
"size" of region I. However, it is difficult to es-
timate this parameter. The other parameter
which determines the importance of the contribu-
tion from region I is Ho/id, . The quantity Ho,
which is determined by J ~, is believed to be of
the order of -100 K at low temperatures. ' Note
that the Noel temperature (which is not deter-
mined by Z'~ alone) is of the order of 1-10 K.
For definiteness, we assume a temperature-de-
pendent H given by Ho(T) =Ho(0)(l —T/TN)"' for
T less than the NOel temperature T N and 0 other-
wise. We also take the phonon-coupling constant
N(0)V = 0.2 throughout this work. From the ex-
perimental findings, ' we have 0.1~Ho(0)/w, ~ 1.0.
One would expect that in a strictly one-dimension-
al system, pairing can only take place for Ho
somewhat less than -w„since the antiferromag-
netic "gap" must be small compared to the cut-
off frequency. In this way both the upper and low-
er magnetic bands participate in the pairing. The
situation is more complicated in three dimen-
sions. As may be expected, as HQ increases,
the contribution of the anomalous region to the
superconductivity decreases. When the entire
FS is in I, we find a criticalIIQ=0. 15m, above
which T, vanishes. For &u,/kFQ =0.2, the con-
tribution of I is very small only for H Q

~ 5, .
Thus it takes a surprisingly large HQ to signifi-
cantly suppress the pairing in region I. This is
a consequence of the coupling between the two
regions. Because region 0 does not experience
the magnetic field, it helps to "maintain" the
pairing in region I.

In Fig. 1 we plot h(T)/b. (0) andH, (T)/H, (0) as
a function of temperature T. The square of H, (T)
is proportional to the free-energy difference be-
tween the normal and superconducting phases.
We choose H~(0)/&u, =0.3 and TN =T,/2. The
curves a and b for H, (T) correspond to ~,/k&Q
=0.08 and 0.2, respectively. The A(T) plotted
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FIG. 1. Temperature dependence of the normalized
free-energy difference H, and gap parameter ~ for
~~/kFQ given by 0.08 (a and c) and 0.2 (b). The param-
eter H&(0)/co~ =0.3 in all three curves. The dashed
line is the BCS result.

(curve c) corresponds to ~,/kFQ =0.08. All
curves are nonmonotonic in contrast to the non-
magnetically ordered case. The decrease in 6
with decreasing T near TN arises because the
"turning on" of HQ suppresses the pairing. This
effect was also found by Machida, Nokora, and
Matsubara, ' although incorrect equations for h(T)
were used. In the case of a larger region I (curve
b) the H, curve deviates more dramatically from
BCS theory than in curve a. This characteristic
behavior has been observed in H„measurements'
in XMo,S, (with X a rare-earth element), which
look very similar to our H, curves. Thus the
quantitative behavior of the H„data can be ex-
plained if one assumes, as in the usual type-II
superconductors, ' that H„=W2M„where v var-
ies slowly with T. However, this relation must
be established within a more detailed theory. It
is of interest to note that the value of the quan-
tity a(0)/T, is 40% smaller than the BCS value
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(i.77) for the parameters in curve g.
%e have derived the Green's functions for the present theory G„and in the presence of spin and

density fluctuations G. We take as our Ansatz in one dimension for the renormalized 4X 4 matrix
Green's function in the basis (Ck tC k i ~Ck+o tC & & i t),

(E,+a,) —(S,~II,) = ' " ' d~, (8a)
7$

((o+ Sq') —((u~aq') =2
o de,

2z, g D,

where D, = [e,' - (to + Zo')'+ (4,+Ho)'j, and v, is
the appropriate golden-rule lifetime associated
with charge fluctuations. Analogous equations
hold for inelastic processes, except that then the
right-hand sides of Eq. (8) each involve a summa-
tion over the Matsubara frequency w„, a variable
which appears as an argument in all the renor-
malized parameters to„(to„), etc. One can use
Eqs. (8) to rederive the weak-coupling results
obtained earlier. In this case we obtain Gp from
G by replacing renormalized quantities by bare
ones and replace i/v, by the BCS step-function
potential (which depends only on e) and then in-
tegrate over e and sum over ~„. The latter sum-
mation leads to the immediate conclusion that
h~' = 0 in weak-coupling theory. It is important
to note, following Ref. 9, that Eqs. (8) show that
in the one-dimensional limit the Anderson theo-
rem (for spin-independent impurities) is violated
in antiferromagnetic superconductors. For spin-
dependent impurities, spin fluctuations, and spin-
orbit scattering, equations analogous to (8) have

been obtained by generalizing Eq. (7) to an eight-
dimensional vector space. Furthermore, there
will generally be additional terms in Eqs. (8) de-
riving from "umklapp" processes; these lead to
terms in 5, etc. , which couple to the "mixed"

(8b)

G - & —&pP3&3+&qP 3+&p&y+~q P~O'y —~q P20'2y

where ho'= —,'(A + b.) and p, and o are the Pauli
matrices in the electron-hole and spin spaces,
respectively. Here (d, H, Ep, and 6™@'are the
renormalized frequency (or mass), magnetic
field, and gap parameters. We find for elastic
scattering that 4~ = 0 and

(7)

susceptibility y». In three dimensions the anal-
ogous equations are more complicated since &™,

etc. , are functions of the direction of the momen-
tum of the Fermi surface. All of these interest-
ing effects will be discussed in a future paper.
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