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With use of perturbed electron density, calculated self-consistently in the density-
functional theory, and a new form for the strain tensor, quantitative agreement has been
achieved for the first time with experiment for the electric field gradient and asym-
metry parameter at various near-neighbor sites in Al containing vacancies. The impli-
cation of this theory in understanding lattice displacement around a point defect is dis-

cussed.

PACS numbers: 76.60.Gv, 71.55.Dp

It is well known that the loss of cubic symmetry
due to a point defect in a cubic metal gives rise
to electric field gradients (efg) which interact
with the host nuclear quadrupole moments. Since
the pioneering work of Bloembergen and Rowland?
many sophisticated experiments?® have been done
and the efg at several near-neighbor (nn) sites
around the defect have been measured. Unfor-
tunately, no satisfactory theory exists that can
account for the efg at nn host sites. The difficulty
in achieving a quantitative theoretical understand-
ing stems from the fact that a point defect in a
metal not only perturbs the ambient electron dis-
tribution but, because of differences in size, it
also introduces a strain in host lattice. These
two effects are interrelated and both contribute
to the efg.

In this Letter we report the first successful
theoretical study of the efg distribution:in a cubic
metal. The theory which takes into account both
charge screening and strain effects is applied to
Al containing a monovacancy. We have achieved
quantitative agreement with experiment for all
near neighbors where experimental values are

available. The screening of the defect charge is
handled self-consistently with use of the density-
functional theory. The conduction electron con-
tribution to efg has been reformulated such that
it is valid at short distances from the defect. In
addition, a new form for the strain tensor is
given which not only accounts for the lack of cyl-
indrical symmetry of the efg tensor but also aids
in our understanding of the lattice displacement
around the point defect.

In the following we present the formulation of
our theory, the motivation for choosing the Al-
vacancy system for its application, a discussion
of our results and finally the implications of the
present work.

The asymptotic expression for the efg® is given
by

q(r) =Lra(ky) on,(v), (1)

where a(ky) is the Bloch enhancement factor and
on,(r) =A cos(2k y7 + 0)7° is the induced electron
density in the asymptotic region. The difficulties
in using Eq. (1) to interpret efg at nn sites in
cubic metals are twofold: (1) The validity of Eq.
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(1) for the first few neighbors is uncertain,

(2) since 6n,(7) is assumed to be spherically sym-
metric, Eq. (1) would predict the efg tensor to
have cylindrical symmetry, in contradiction with
experiments.?

Sagalyn and Alexander® have studied the con-
tribution of the lattice strain to the efg following
the elastic continuum model. As pointed out by
these authors, the strain around the defect in-
fluences the efg in three different ways. The
first two effects (the so-called indirect effect)
originate from the displacement of the nn sites
(giving rise to new equilibrium configurations of
nn) and the local distortion around the defect
(affecting the strength of electron-defect scatter-
ing®). A direct and somewhat more important
contribution (usually referred to as the size ef-
fect) is a term proportional to the local strain.
Using the point-ion model,® Sagalyn and Alexand-
er* have calculated the local strain contribution
to the efg tensor ¢,;; by relating it to a strain ten-
sor €, through a fourth-ranked tensor F. The
strain-tensor is related to the displacement vec-
tor U through the relation, «,,=3(%,/a,+ou,/
&,) and U was assumed to have the following
form,

U=Dr/r*, (2)

where D is a constant and is a measure of the de-
fect strength. The indirect contribution to efg
due to lattice strain as well as the valence con-
tribution were calculated by replacing the asymp-
totic charge density in Eq. (1) by the preasymp-
totic form.™® By using the Bloch enhancement
factor « and a strain-coupling constant A (which
can account for the inadequacy of the point-ion
model® in determining the F tensor) as adjustable
parameters, Sagalyn and Alexander* studied the
efg’s at first two near-neighbor sites in Cu-based
alloys and obtained semiquantitative agreement
with experiment. There are several drawbacks
in this work. To list a few, we have the following:
(1) The variations in the adjustable parameters
between different neighbors and different impuri-
ties were rather large. Furthermore, the magni-
tude of A was as large as 87 whereas Faulkner®
had predicted an upper limit of 7 for copper.

(2) Most of the conclusions regarding the impor-
tance of valence contribution are based upon the
assumption that the preasymptotic form for the
charge density is valid even at the first-neighbor
gite. Not only is the validity of such an approxi-
mation in doubt, but the preasymptotic form was
obtained with use of empirical phase shifts.

(3) The spatial dependence of the displacement
vector U in Eq. (2) used in their calculation sug-
gests that all the neighbors would move along the
same direction, in disagreement with earlier cal-
culations,? 1

In our theory we have tried to remedy all these
shortcomings. We begin with the calculation of
the valence contribution to efg. If we assume
that the induced charge density and the potential
are spherically symmetric around the defect,
Poisson’s equation yields

dA2V/dr? +2r~'dV/dr = 4ne[n(7) — oo l(v)], (3)

where e is the magnitude of the electron charge.
On .y, and On are, respectively, the perturbations
caused in the positive and negative charge dis-
tribution of the metal due to a defect. If the z
axis is chosen along the direction connecting

the impurity and the host ion under consideration,
the traceless efg tensor is given by

€q. =d*V/dr* -+ V*V. (4)

With use of Eqs. (3) and (4) and the notations in
Ref. 4, it can be shown after some algebraic
manipulation that

g "(v) =27 ok p){ on(r) +(3/417°) [ Zess - Z(¥)] },
(5)

where Z(7) = forén(r)d"r is the induced electron
charge within a sphere of radius » around the
point defect. Thus for » -, Z(7) = Z ¢, the
effective charge on the defect ion. In the asymp-
totic region, the second term inside the curly
brackets in Eq. (5) is zero, and one recovers the
usual formula of Kohn and Vosko.® It can be
easily shown that if the potential and induced
charge density are kept to the order »™* (pre-
asymptotic) one recovers the expression of
Jensen, Nevald, and Williams exactly.® It should
be emphasized that the charge density 6n(#) in
Eq. (5) is obtained self-consistently in the density-
functional theory and is valid at all distances
from the point defect. Thus the efg in Eq. (5)
does not suffer from the shortcomings associated
with the validity of the asymptotic and preasymp-
totic form at first few nn sites. It should also be
pointed out that the contributions to the efg from
outside the host atomic sphere (the so-called
distant contribution) have been calculated with
use of the geometry prescribed by Sagalyn and
Alexander.*

For computation of the strain tensor, we have
considered a different form for the displacement
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vector
(6)

where A and ¢ are constants. This choice was
motivated by the well-known oscillatory depen-
dence of the scattering charge density and poten-
tial at large distance from the point defect. The
exponent » in Eq. (6) is assigned a value of 3,
which is consistent with Eq. (2) as well as com-

U=Acos(2kw + Q)T /7",

constant A is chosen such that the displacement
of the nearest neighbor agrees with either experi-
mental value (if available) or with first-principles
theory. The constant ¢ is determined from the
equilibrium conditions of the continuum theory of
elasticity'! and thus is not an adjustable param-
eter.

Using Eq. (6), we have solved the traceless efg
tensor equation eq;,;°=V;,;*—30;;V2V*® for the

puter simulation studies® in fcc crystals. The | strain along with V,,°= > un €mn Fijmn and obtained
Acos(2kpd, +¢,) nln-1)+4k:2d,2\/, XX ;
= - Fy)0,;+2(1- 0, 12 S )5 6, -5 ).
q:;°=1(Fy = Fyp) i3+ 2( IJ)F44]( 2d,%e n-2)d,"® 5 0y d? (D

Here, v refers to the configuration (i.e., first
nn, second nn, etc.) of the near neighbor at a dis-
tance of d, from the point defect. In the point ion
model,® F,, - F;,=9e/d?, and F,, -~ F,=-3F,,.
Here A, as mentioned earlier, is a dimensionless
strain-coupling parameter which corrects for the
fact that a solid is idealized by point charges.
This concludes our discussion of the formalism.

We have applied this theory to calculate the efg
distribution around a monovacancy in Al. This
choice was dictated by the following reasons:

(1) Recent single-crystal NMR data'? are avail-
able up to fourth nn sites. Also a large asym-
metry parameter (n=0.65) was observed in the
efg tensor at the first nn site. (2) Al is a simple
metal and the assumptions made here are be-
lieved to be reasonable for Al. (3) A monovacan-
cy in Al corresponds to a charge difference of
AZ =6 between the point defect and the host ion
and thus constitutes a large perturbation on the
electronic environment. (4) First-principles cal-
culation of lattice displacement around a mono-
vacancy in Al is also available.

The charge screening and the valence contribu-
tion to efg were calculated self-consistently in
the density-functional theory.®*'* We have com-

pared our calculated induced electron density
on(r) with the asymptotic and preasymptotic forms
which were computed from our calculated phase
shifts for 0 </ <6. We find that the true induced
charge is very different from the approximate
forms at the first few nn sites. Thus any conclu-
sion drawn from the use of approximate charge
densities is deemed to be unreliable. We have
found that the correction to the Kohn-Vosko form
in Eq. (5) is important up to as far as fourth-
neighbor sites. Also the size of the distant con-
tribution* as mentioned earlier is comparable to
that in Eq. (5).

The strain contribution in Eq. (7) was calculated
by first determining A in Eq. (6) such that the dis-
placement of the first nn is in agreement with
Singhal’s calculated 1.74% inward displacement.
With the value of ¢ determined from the equilibri-
um conditions,* as discussed above, Eq. (6) pre-
dicts the displacements of the 2nd, 3rd, and 4th
neighbors to be —0.42%, -0.19%, and —0.10%,
respectively., These have to be compared with
Singhal’s values® of -0.93%, -0.23%, and -0.07%,
respectively. .

In Table I our results for the largest component

TABLE 1. Electric field gradient q(f&'?’) and asymmetry parameter 7 at
four nn sites due to a monovacancy in Al with the antishielding factor (1
— Y) from Ref. 16 and the Bloch enhancement factor @ from Ref. 17.
Here g=¢"+¢°. The values for ¢°, g, and 0 from theory are calculated
with use of Eq. (7) and A=—1.7,

Theory Experiment
nn q° q° q 7 lq| 7
1 0.037 —-0.314 -0.277 0.78 0.28 0.65
2 0.008 -0.199 -0.191 0
3 =0 -0.092 —-0.092 0.76 0.093 e
4 -0.002 —-0.074 —0.076 0.24 0.069 oo
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of the efg tensor and asymmetry parameter are
compared with the experimental values. Several
comments have to be made:

(i) The strain coupling parameter A was chosen
to fit our computed efg at first-nn site so that it
agrees with experimental value. This led to a
value of A=-1.7, It should be pointed out that
Chakraborty, Pickett, and Siegel® have carried
out a supercell calculation of the lattice displace-
ment around a monovacancy in Al. Their result
for the first-nn displacement is 2.5% inward. If
we use this displacement instead, a value of x
=-1.2 is obtained since the leading term in the
strain contribution to efg is proportional to the
fractional displacement. It should be emphasized
that the calculated efg in Eq. (7) is independent of
how the amplitude A in Eq. (6) is fitted to various
calculated displacements since ¢;;°cAx. Thus
the strain coupling parameter A can be adjusted
to accommodate any variation in the value of A.

(ii) The valence contribution to the efg for all
the neighbors considered here is small in com-
parison to the strain contribution.

(iii) Our computed efg at other nn sites is in
quantitative agreement with experiment.

(iv) When the efg due to strain is calculated
using the radial displacement in Eq. (2), we find
that A = -29 is needed to obtain agreement even
for the first-nn site. This value of A is much
larger compared to that obtained using the form
of the displacement vector in Eq. (6). This large
difference in the values of A is a consequence of
the additional term 4k ;?d,? in Eq. (7) which is ab-
sent if the displacement vector in Eq. (2) is used.
Furthermore, the form which uses Eq. (2) pre-
dicts the efg at 2nd, 3rd, and 4th neighbor to be
-0.134, - 0.054, and —0.039 A"2, respectively,
in worse agreement with experiment. The asym-
metry parameters, 7, on the other hand, for the
first four nn are 0.78, 0, 0.76, and 0.18, respec-
tively.

(v) The computation of the efg for the third nn
is much more complicated than for the other nn
sites considered here. This is because of the
fact that the principal axes of the valence-effect
and the size-effect tensors do not coincide. For-
tunately, the valence contribution to the efg at the
third nn is nearly zero and the above problem
does not concern us for this particular applica-
tion.

(vi) If the valence contribution to the efg were
also zero for the first and fourth nn, it can be
shown that the asymmetry parameter n=0.33 for
both the neighbors. The large difference between

the calculated value of n in Table I for these two
nn’s is due to the role of valence effect. This
clearly illustrates the need for a better under-
standing of the valence contribution even though
its influence in determining the efg for any nn
seems to be less important for the present appli-
cation.

(vii) The value of n for the third nn is rather
large and is independent of x» as well as of the
form for the lattice displacement vector { as
long as the valence contribution is zero. Thus,
an experimental determination of 7 for the third
and fourth nn will serve as a further check on the
quantitative accuracy of this theory.

(viii) The valence effect is expected to die out
faster than the size effect as one goes further
away from the point defect since the latter is a
mechanical property while the former is an elec-
trical property which is screened out in a metal.
This is reflected in our results in Table I.

In conclusion, we have presented a complete
theory for efg in cubic metals due to point de-
fects which is valid at nn sites. The conduction-
electron contribution was calculated in a self-
consistent theory and the strain contribution with
use of a new form for the displacement vector.
While the quantitative agreement achieved here
is gratifying, the reader must be cautioned
against premature optimism unless the theory is
capable of explaining efg systematically in sever-
al cubic metal alloys. It is our hope that this
paper will stimulate further work in both theory
and experiment,
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The mean-field theory of an antiferromagnetic superconductor is solved and some fluc-
tuation effects are discussed. In contrast to claims of other authors, it is found that the
pairing is of the usual BCS type, A= (C;’,TC -]:);T‘}. Results for the gap parameter A(T)
and H, (T) are presented. The latter is similar to the measured H;,(T). The ratio A0)/
T, and the (nonmonotonic) temperature T dependence of H, and A(T) are shown to deviate

markedly from BCS theory.

PACS numbers: 74.20.Fg, 75.50.Ee

The recent discovery of antiferromagnetic (AF)
superconductors’ has revived interest in the prob-
lem of coexistent magnetic and superconducting
order. In this Letter we present a mean-field
theory and discuss some fluctuation effects for a
system of superconducting electrons interacting
with antiferromagnetically ordered localized
spins. While we treat a somewhat idealized three-
dimensional system, our qualitative results are
relevant to the Chevrel-phase and rare-earth rho-
dium boride AF superconductors.

One purpose of this paper is to establish the na-
ture of the (most favorable) Cooper pairs: We
find, in contrast to a previous claim? that the
order parameter is of the usual BCS type,
(ci,,“c_a,ﬂ) =A,=A. Another aim is to calcu-
late the thermodynamic variables A, T, and H..
In particular, we find a nonmonotonic tempera-
ture T dependence of A and H,. The latter quan-
tity, which is related to the difference of the free
energies in the normal and superconducting phas-
es, is found to have a T' dependence rather simi-
lar to that of the measured upper critical field
H_, (Ref. 3) for the Chevrel-phase AF supercon-
ductors.

The importance of doing a mean-field calcula-
tion should be emphasized. First, it is essential
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in order to properly characterize the Cooper
pairs. Second, it is a necessary first step in any
treatment of fluctuation effects. Using mean-field
theory as a basis, we can then obtain the Eliash-
berg-like equations for the renormalized gap func-
tion A and effective mass from which we derive
the superconducting density of states and an effec-
tive spin-flip lifetime 7,. We will discuss this
briefly at the end of this paper and in more detail
in a subsequent work.

Our Hamiltonian contains the d-electron kinetic
energy, the d-electron—f-electron exchange inter-
action J% (assumed constant for simplicity), and
the d-d interaction arising from the phonons. In
our mean-field theory we replace the Fourier
transform of the f-electron spin operator S; by a
temperature-dependent molecular field Hy
=J%(Sy)/2N , where Q is the wave vector of the
antiferromagnetic order. The electron-electron
term, which is written as

=2 VitiChedo Chr 307 Citya Cuo s
k, k't'Cly
040
allows electron pairing with ¢ =0 and ¢ =+ @, all
of which must be included in order to proceed in
the most general way.



