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the order of 35@ in transfer reactions.
The present paper shows evidence in transfer

reactions for an important breaking of the super-
symmetry selection rules proposed by Iachello, "
with at least a 35 breaking of the supersymmetry
scheme itself. In view of the interest of the prob-
lem, it should stimulate other experimental and
theoretical works to understand further the limits
of validity of the supersymmetry model.
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The version of the interacting-boson model (IBM) which treats neutrons and protons sym-
metrically can be converted into a Bohr Hamiltonian description in three steps: {1) Map-
ping the IBM pairing bosons onto a quadrupole particle-hole-type boson under a general-
ized Holstein-Primakoff transformation; {2) introduction of pseudocanonical coordinates
and momenta; (3) expansion in powers of the pseudomomenta, valid for large particle
numbers. The limiting symmetries of the IBM emerge directly from a study of the po-
tential-energy surface.

PACS numbers: 21.60.Ev, 21.60.Gx

In view of the impressive achievments of the there has been mounting interest in understand-
interacting-boson model (IBM) in describing nu- ing as precisely as possible its connection with
clear collective motion at low excitation energies, ' the established phenomenology, the Bohr collec-
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Qp
= s tdq +d

p
ts + y(dtd)

d„=(-1)"d „.
(2)

(3)

The Hamiltonian (1) contains three parameters,
c describing the relative excitation energy of a d

pair compared with an s pair, ~, the overall
strength of the quadrupole-quadrupole force, and

y, the relative importance of the two kinds of
basic quadrupole that define the general quadru-
pole operator (2).

The Hamiltonian (1) conserves the total number
of bosons, N, where

N=s s+Pdp dp,

and N is considered to be half the number of
"active fermions. " The goal of the program under

tive Hamiltonian, "of which it is a generalization.
In preliminary reports, a method based on the
use of coherent states4 has been applied to the
computation of the collective potential-energy sur-
face' and more elaborately (in the guise of the
method of generator coordinates~ ') to the compu-
tation of a full collective Hamiltonian. (The di-
rect comparison of this result with a Bohr Hamil-
tonian is problematical because of the absence of
unitary equivalence of the two descriptions. ) Pre-
viously, Moshinsky' had shown how the IBM
Hamiltonian could be diagonalized in a represen-
tation based on the Bohr picture. Closest in
spirit to the present work are discussions'0'"
in which the relevance of Eqs. (5)—(8) (below) to
the problem at hand has been appreciated, but
the further consequences which flow from it have
not been drawn.

The purpose of the present note is to describe
and implement a method which maps a standard
IBM Hamiltonian into a Hamiltonian associated
with an orthonormal basis which describes only
the degrees of freedom (quadrupole oscillator)
that occur in the Bohr picture. The approach
followed is related to ideas suggested some time
ago by one of the authors '- within the frame-
work of a simplified model. A subsequent gen-
eralization by Okubo" will be the starting point
of the present work. The basic idea can be ex-
posed by reference to a standard IBM Hamilton-
ian, expressed in terms of two bosons, the s
boson, describing a pair of nucleons coupled to
angular momentum 0, and the d& boson, p. = 1,
. . . , 5, describing a coupling to angular momen-
tum 2,

H=egd„ dt„—xQQ„Q „(-1)",

consideration is to replace the six degrees of
freedom of the IBM by a Hamiltoni. an containing
five quadrupole degrees of freedom and the value
of N. It is understood that the equivalent Bohr-
Mottelson picture emerges in the limit as N tends
to infinity. Thus, if we can display a transformed
Hamiltonian which admits an expansion in inverse
powers of A', our aim will have been essentially
achieved. We proceed to do the task.

Generalized Holstein-Primahoff Mappirg T.h—e
35 bilinear combinations of s, d, and their Hermi-
tian conjugates which are linearly independent of
(4), but commute with it, are the generators of
SU(6). Our problem is greatly simplified by the
circumstance that we require only a very special
representation of this Lie algebra, namely the
one completely characterized by a single quantum
number, the value of N. As Okubo" has shown, "
this representation can be constructed in terms
of a new quadrupole boson, 6 &, by means of the
formulas,

d„~d,= b„b„,
d~ s =bpt(N —h)'i

s' d„=(X- h)~ 2b

s s=N —h,

where

(5)

(6)

(7)

(8)

is clearly the number of b bosons. [A similar
reduction from n to n —1 bosons can be carried
out for SU(n). Only for n =2 does it yield all the
representations, in this case reducing to the
famous Holstein-Primakoff representation" of
angular momentum. ]

It may help the reader to consider the following
interpretation of Eqs. (5)-(8): In the IBM, the
basis for studying a nucleus with N bosons is ob-
tained by applying to the "vacuum" various pro-
ducts (s')"~(d') "d such that n, +n„=iV. An equiva-
lent basis is obtained by applying (b')" to the
state (s ')"

i vac), where n (N. The b boson is
thus to be considered as a multipole rather than
a pairing boson, and for this reason is the ob-
ject which we ultimately seek to associate with
the Bohr picture.

The substitution of (5) —(8) into H yields a first
form of transformed Hamiltonian, which we do
not record. In consequence of the square roots
in (6) and (7) it is not a polynomial in the crea-
tion and annihilation operators. One might be
tempted to expand in powers of h/ti, but this ex-

587



VOLUME 46, NUMBER 9 PHYSICAL REVIEW LETTERS 2 MARCH 1981

pansion can be justified only in the limit of weak
interaction among the bosons, which coincides
with the SU(5) or vibrational limit of the IBM."
Since we wish to develop a theory that is also
valid for the other special limits of interest, the
O(6)" and SU(3)" limits, we must proceed with
greater caution.

Limit of Large Particle Numbers I.n—the ex-
amples studied previously, " "the passage to the
large-1V limit was achieved by replacing the crea-
tion and annihilation operators by action-angle
variables. In the meantime, we have recognized
that the same ends can be achieved most simply
by the introduction of canonical coordinates and
momenta (strictly pseudocanonical coordinates")
by means of the standard formulas,

and note that if we lump the factor xx with the
factor N and expand only in terms of the remain-
ing quantities, pp+5, then successive terms will
certainly diminish by reciprocal powers of iV.
Though this expansion is justified for large N for
all regimes of the parameters and is the only one
generally valid, further expansion of the coord-
inate dependence is justified in the spherical do-
main.

The successive substitutions and expansion that
we have described entail only the most elementary
of algebraic manipulations. We therefore pass
immediately to the final Hamiltonian which we
wish to consider. For this we require some de-
finitions and a change of variables. The latter
involves a convenient rescaling

and

b„t=(x „—ip„t)/W2,

b„=(x „t+ip„) /v 2,
(10) x-N 'x, p-N ~ p.

We shall also encounter the following tensors of
rank 0 and 2:

x~ =xp) p~ =p~)

[x„,p, ]= ib~= [x „,p„].
(i2)

(13)

xx —= p',

(x e&x) „"'-==„,

(16)

(i7)

h =btb= 2(xx+pp+5), (14)
i

Below we shall first exhibit and then manipulate
the Hamiltonian which results from the substitu-
tion of (10) and (11) into Eq. (1). First, however,
we describe the physical basis for the steps to be
taken. The argument which follows is well known. "

When dealing with the oscillatory regime, small
vibrations about spherical equilibrium, the com-
mutators (13) are fulfilled by matrix elements
which, in order of magnitude, satisfy x-p —i.
On the other hand, when the system undergoes a
phase transition to a deformed shape, as we
shall see in detail below, x -N' ', so that in
order to satisfy (13), we have p -N '~2. This
suggests that in dealing with the radicals that
occur in (6) and (7), we write (matrix-multiplica-
tion notation)

x= -=-(~7) '~2P cos3y,

(p ep)(" =pp = II, (19)

(p CIp) (2) —8 (20)

We exhibit a dimensionless Hamiltonian,

3C =H/Ne, (2i)

E=—xN/e,

namely

where ~ is the potential energy, "

(22)

(23)

expressed in terms of a dimensionless coupling
constant

''u( & +Q(N-2)

~"' = (-'- 2E»'+ EX [~(1—-'p') ]"p' cos3y+ E[1-(X'/14) J p',

)It(1) 1~2 +( )L) 1/2P ~ [I 1P2] 1l2P2 cos3

and f' is the kinetic energy calculated to the lowest nonvanishing order only,

t'N2= —,'ll+ 2EJ p', ll] —( —,
' &7)-Ey(p'cos3y, f(1 ——,'p') '~', lI] j

-(»-"'EX((1--'P')" E
o- &}--'EX'(= 0 &

(24)

(25)

(26)

(27)

The curly brackets in (27) are anticommutators.
To understand fully the significance of the result contained in (21)—(27), we emphasize that if indeed
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x and p, as redefined through (15), are each of order unity, then we have succeeded in developing the
Hamiltonian in reciprocal powers of N. In the limit as N- ~, the energy per particle is determined
completely by the function '4 ', the so-called potential-energy surface. In this case the model yields
a finite energy per particle. Reverting to the spherical or weak-coupling limit, we have instead that
&'~ and & are the same order of magnitude, both of order N '. Thus, since the energy per particle
tends to zero with increasing particle number, the energy per particle is still given correctly in this
case by the potential energy alone (since it also gives zero). We conclude that it suffices to study the
latter function to determine the various regimes or phases enjoyed by the model under consideration.
However, before carrying through this discussion, we must change the definition of the variable P in
order to be able to compare with Hefs. 4 and 8. The variable P defined by Eq. (16) cannot exceed v 2 in
value; the variable employed in Refs. 4 and 8, which has the conventional range 0- ~, is related to
ours by the equation

so that in the sequel we shall study the function (dropping primes)

(1+p2)2&(0' =(s —2E)2p (1+p ) +4Ey(~~)~ p cos3y+F[1-(y /14)]4p .

(28)

(29)

Potential -Energy Surface The .p—otential-ener-
gy function displayed in (29) shares most of its
salient properties with the polynomial potentials
discussed at length in the literature, "'"and
therefore we can be relatively brief. First of all,
independently of P, the minimum occurs for sin3y
=0, i.e, y=0' or 60'. For E~O, we choose y=0.
The resulting function is then very similar in its
properties to the standard quartic potential, ex-
cept for the cutoff factors for large P. For suffi-
ciently small I, the minimum of 'h' occurs for
P=O, the spherical, vibrational, or SU(5) limit.
As I' increases sufficiently to yield a minimum
for P&0, further discussion requires considera-
tion of separate regimes for the parameter g. In
analogy with the standard discussions, y ~0 cor-
responds to an oblate deformation, whereas X&0
yields a prolate shape. For g=0, the potential
is y independent, i.e., we are dealing with the y-
unstable case. The simplest case of deformation
to study is the y-unstable one. The minimum
occurs for

(30)

We consider just one more example, the SU(3)
limit corresponding to y= —~2v7 and P-~. The
potential-energy function in this case reaches its
minimum for p= V2. We leave it as an exercise
to show that P becomes negative for positive y,
corresponding to an oblate deformation.

The results described above for the potential-
energy surface agree with those given in Refs. 5
and 8. This is not to imply that our results con-
tinue to agree beyond this approximation, since
no continuation method is given in Ref. 5, and
Ref. 8 utilizes the method of generator coordi-
nates which yields a non-self-adjoint Hamilton-

ian. It is a matter of principle that such a Hamil-
tonian is not the Bohr phenomenological Hamil-
tonian. In a paper received'4 after this manu-
script was submitted for the first time, it is
shown that the Hamiltonian in Ref. 8 becomes
self-adjoint in the limit N- . This also ex-
plains why the potential-energy surfaces agree,
since ops is manifestly correct. However, our
Hamiltonian is self-adjoint for any value of N.
These differences will be elaborated in a more
complete publication.

This work was supported in part by the U. S.
Department of Energy through Contract No. EY-
76-C -02-3071.
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The inclusion of the quadrupole moment of Li and Be in coupled-channels calculations
removes the need to renormalize the real double-folded potential, obtained from an ef-
fective nucleon-nucleon interaction, for Li+ Fe, Ca and Be+ Ca elastic scattering.
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In the double-folding model, the optical poten-
tial is obtained by folding an effective nucleon-
nucleon interaction with the projectile- and tar-
get-density distributions. Elastic scattering of
the lighter heavy ions has been in general suc-
cessfully described' ' by using the effective nucle-
on-nucleon interaction M3Y, ' which is based on a
realistic t" matrix, to generate a double-folded
real part of the optical potential. However, the
scattering of 'Li (Refs. 5 and 8) and 'Be (Ref. 7)
projectiles appears to be anomalous in the sense
that the M3Y interaction has to be reduced by a
factor of about 2 to reproduce the data. Recently,
the need for a renormalization of the double-fold-
ed potential by a factor of -

2 has been shown for
'Li scattering. " Satchler' has suggested that the
anomalous behavior of 'Li and Be could be con-
nected with the very small breakup energies of
these two nuclei: only 1.47 MeV and 1.57 MeV
for 'Li -o.'+d and 'Be -2a+n, respectively. The
nuclei 'Li and 'Be have, however, another impor-
tant property, large static quadrupole moments:
—4.5 ~0.5 e fm' for 'Li (Ref. 10) and + 4.9 +0.3

e fm' for 'Be (Ref. 11). Blair" first suggested
that ground-state quadrupole moments could be
important in elastic scattering of heavy ions. Re-
cent work" has demonstrated that there are sig-
nificant quadrupole contributions to "B elastic
scattering. In this Letter we show that when the
strong quadrupole effects in the scattering of 'Li
and 'Be projectiles are treated explicitly in coup-
led-channels calculations, no renormalization of
the real double-folded potential is needed to re-
produce the data in the cases investigated.

The targets "Ca and "Fe were chosen for the
present study to minimize the role of strongly
coupled target excited states, which could ob-
scure the effects due to the projectile quadrupole
moment. We analyzed previously measured data
for 'Li+' Fe elastic scattering and inelastic scat-
tering to the first excited state in 'Li taken at
E,~ = 48 MeV (Ref. 14), and for 'Li+4'Ca elastic
scattering at 34 MeV (Ref. 15), and our new data.
for 'Be+ "Ca elastic scattering at 40 MeV. The
'Be+ "Ca data were taken at the Florida State
University tandem laboratory and details of these
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