
VoLUME 46 2 MARCH 1981 +UMBER 9
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A new approach to quantum gravity is proposed. The framework is sufficiently general
to handle nontrivial space-time topologies required, e.g. , in the black-hole formation and
evaporation processes, and yet it incorporates notions such as energy-momentum, angu-
lar momentum, spin, mass, and discrete symmetries, normally associated with the
Poincare group.

PACS numbers: 04.60.+n

In this Letter, I shall outline a new approach
to quantum gravity. The key idea is to use the
framework describing gravitational radiation in
exact general relativity to isolate the "true"
gravitational degrees of freedom, and, symplec-
tic methods, to quantize them. The analysis is
geared to obtain a S-matrix description. However,
it differs from other 8-matrix approaches in a
crucial way: At no stage do I introduce a back-
ground metric or linearize Einstein's equation.
Thus, for example, gravitons emerge as "asymp-
totic entities" in the exact theory, rather than
spin-2 quanta on a flat background.

Isolation of the radiative degrees of freedom.—Penrose's' null infinity, 8, is a powerful tool
in the S-matrix theory of zero-rest-mass fields. '
Consider, for example, Maxwell fields in Min-
kowski space. A regular source-free field E,~ is
completely characterized by E„ the pullback to
8 of I"„n', vrhere n' is the (null) normal to 8.
This e, represents the radiative degrees of free-
dom of E,~ and can be quantized directly on 8,
without any reference to the "interior" of space-
time. Although equivalent, via field equations, to
the usual quantization method, this procedure
avoids altogether the use of momentum space and

is therefore well suited for extension to the gravi-
tational case. An analysis of Yang-Mills fields
along these lines has recently been carried out by
Newman' and by Hawking and Pope. '

In the gravitational case, quantum considera-
tions were in fact among the main motivations for
the original investigation of null infinity. " Un-

fortunately, the structure turned out to be substan-
tially more complicated than that, say, in the
Mmmell case: Several asymptotic fields, inter-
related via nonlinear equations, were involved,
making it difficult to single out, in an invariant
way, the fundamental fields from which all "ra-
diative aspects" can be derived directly. Recent-
ly, however, Geroch' recast this description in
an intrinsic framework, thereby providing a bad-
ly needed stepping stone. In what follows, I use
his notation.

I"ix an asymptotically empty and flat' space-
time (M, g) and a Penrose completion (M, g) there-
of, such that 8 is divergence-free. Then, the
connection V on (M,g) induces a connection D on

8, satisfying

D.g„=O; D.n' =0;

Da~y =2D [N~y j+2Cyagay ~ ~'~ =
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where, g„ is the pullback to 8 of g„; n', the nor-
mal to 8; and, V', any vector field on 8 such that
V' g,& =V&. Under a conformal rescaling, g- ~'g,
(which keeps 8 divergence-free) we have

D, Kb D,Kb —2~ 'K[,D»&u+ (ur K )~ 'g, b, (2)

where, ~ is the restriction to8 of V ~. ThisD,
together with pullbacks to 8 of various tensor
fields and equations on (M,g) enables one to intro-
duce various asymptotic notions of physical inter-
est.'

It turns out, remarkably, that these connections
on 8 represent precisely the radiative degrees of
freedom of g,~. To see this, it is convenient to
fix, on 8, a conformal frame (g,b, n'). Then, con-
nections D on 8 corresponding to g„ form an
equivalence class {D): Given D and D in {D),
there exists an f on 8, such that, for all K„

(D, -D,)K =f(K,n')g„. (3)

(I have D -D if g- aug, with ~ =1 on 8.) Fix a
connectionD in{D). Then, I claim that, because
of Eq. (1), there exists a unique tensor field S,'
on 8 such that: S,~n'=an for some function o;
S„:=S,'g„ is symmetric; S„g"=&, the lift to 8
of the scalar curvature of the two-metric on the
manifolds of orbits of n' induced by g,» and,

2D (,Db]K& =[[Izbb Kd = (gb[+Sb] —Sb[+5b] )Kd (4)

for all K,. Consequently, one can define

g~b. &amnD S b
~ 4 m n

+ah' Sab ~abc (6)

where e' " is the alternating tensor on (8,g,b)

and p, & is the unique symmetric tensor field on 8
satisfying p gQ =Oq D) pgj =O~ and p„g"=0.
Then, it follows that *K"and N, „are symmetric
and trace-free and that D, ~K" =0. Hence, *K"
andN, „, introduced here with use of only D, are
the same fields as those introduced by Geroch in
Ref. 5 by pulling back to 8 space-time fields: N„
is the news-tensor while the five components of
*K'" correspond in the Newman-Penrose' notation,
to 0 ~o, +So, and Im+2o Next, I claim that the two
fields and their properties are unchanged if D is
replaced by any D in {D). Thus, all information
about "radiative aspects" of g„can be extracted
from {D)alone. Furthermore {D)has "no other
information": For example, Re+,', which repre-
sents "longitudinal modes, " cannot be obtained
from {D).'

Hamiitonian formulation. —I now wish to con-
struct the phase space of all radiative modes.
Since we do not have any background space-time
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to refer to, I must first introduce the kinematic
arena where the action is to take place. Fix a
three-manifold 8, equipped with a collection of
pairs (g,»n') of nowhere vanishing fields so that
(i) g„V' =0—V is proportional to n; (ii) Z„g„=0;
(iii) (g, n) and (g', n') are both in the collection if
and only if g' = ~'g and n' = cu

' n for some ~ satis-
fying 2„&u =0; and (iv) n' is a complete vector
fieM and its manifold of orbits is diffeomorphic
to S'. This is the required arena.

Fix a pair (g, n) on 8. Denote by 8 the collec-
tion of connections D on 8 satisfying Eq. (1). D
and D in t will be said to be equivalent if they
satisy Eq. (3) for some f. Denote the space of
equivalence classes by 1". This affine space I' is
the phase space of radiative modes. 'o

Let us first "count" the degrees of freedom. It
is easy to show that, for any two connections D
and D in e, (D, -D,) K, =Z„K,n' for some sym-
metric tensor field Z„satisfying Z,&n" =0. It
then follows from Eq. (3) that the difference be-
tween any two elements of 1" can be completely
characterized by y„, the trace-free part of Z,„.
Thus, by fixing an arbitrary element as origin,
l can be coordinatized by these y.b. How many
components does y„have~ Precisely two.

Next, I introduce a symplectic structure Q on
I'. Since 0 is to be a tensor field on I', and
since tangent vectors at any point of I' represent
linearized radiative modes, one needs, in effect,
the expression of the symplectic tensor of linear-
ized gravity off arbitrary asymptotically Qat
space-times. A simple extension of the known
results" gives

~(D)(»r): =f (r.b&.r; -r.b&.r,d)g"g" d8, (7)

where y and y are arbitrary tangent vectors at
the point {D)of I", and g" any "inverse"' of g.,
on 8. Equation (2) implies that the expression is
conformally invariant. Also, as one might ex-
pect, Q has the dimensions of action and is con-
stant with respect to the affine structure of I'.

The action of the Bondi-Metzner-Sachs (BMS)
groupd B on 8 provides a powerful check that {I',
Q) is the "correct" phase space. Not only does it
preserve the collection 6 of preferred connections
on 8, but it also respects the equivalence relation
in Eq. (3). Furthermore, the resulting action of
B on I" leaves 0 invariant. One can compute
the Hamiltonians generating the corresponding
canonical transformations. For the special case
of BMS translations, en', I obtain

a({D))= —p I,aN„V,„g"g"d8.
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This is precisely the Bondi-Sachs formula for
Qux of four-momentum. "

This phase-space formulation is very reminis-
cent of gauge theories: The basic variable in both
cases is a connection. One may therefore regard
(Dj as the "potential" and N„—the nontrivial
part of the curvature of (D)—as the "field."

Quantization. —I begin by introducing an opera-
tor -valued distribution N„(x)—the news —on 8,
satisfying the canonical commutation relation
(CCB):

[N(f), N( j)i =(It/i)tl(f, j)~, (9)

with N(f) = JN„f«g"g'"d8, where f,» satisfying
f„=f&,», f„n'=0, and f„g"=0, is a test field in
S(8).~ [Classical observables, N(f):=N„f„g"
&&g'"dg, generate affine struct-ure prese-ruing
canonical transformations on (I', 0) with Poisson
brackets given by (N(f),N(f')] =Q(f,f'); hence
the introduction of N„(x), and Eg. (9).] The Pock
representation can be constructed as usual. Let
X denote the complex Hilbert space of positive-
fregueney 4 fields f„' on 8, with the inner pro-
duct (f+,f'+) =(i /h)Q(f', f'+). This X is the one-
graviton space: One can represent N(f) by sums
of creation and annihilation operators on the sym-
metric Fock space F based on K. This represen-
tation of the CCR is, of course, irreducible. It
provides a (reducible) unitary representation of
the BMS group B. The induced representation of
any Poincare subgroup of B can be decomposed in
to two irreducible parts: They have the same
mass (rn =0) and spin (~ s~ =2), but opposite helici-
ties. [Graviton state f„' is right (left) handed if
E™nPtpg„y=+if„', where t ~ is any covector on S
with t n =1.] The generators of various BMS
transformations provide us the quantum momen-
tum-angular-momentum operators.

There exist, in addition, other representations
of the CCR of physical interest; Consider, to
begin with, the classical observable Q„(6, y)
= f „N„(u, 8, cp} du on I', where we have used a
Bondi system on 8. (N(f},Q,/=0 for all f. Con-
sequently, one might expect, in quantum theory,
unitarily inequivalent representations of the CCR
labeled by values of the "internal charge" Q„(8,
p}. This is indeed the case. [The situation is
completely analogous to the two-dimensional
model, "G4=0, with N„playing the role of the
"field" d4/dx, and, Q„of the "topological
charge" C(x= ~}—C(x= —~).] In classical gener-
al relativity Q„has a natural geometrical inter-
pretation —it represents the amount by whi:ch the
shear-free cross sections of 8 in the distant fu-

ture are supertranslated relative to those in the
distant past —whence Q„ takes values in the quo-
tient ST/T of the supertranslation subgroup ST of
B by the translation subgroup T. Thus, the emer-
gence of new quantum sectors is intertwined with
the enlargement of the translation group to the
supertranslation group. The enlargement itself
has been a puzzling (but essential) feature of
gravitation radiation in the exact theory. From a
purely quantum theoretic viewpoint, on the other
hand, one can show that the new representations
are the natural analogs of the infrared sectors in
electrodynamics. Thus, one now has an "expla-
nation" of the supertranslation ambiguities: They
arise as a combined effect of the infrared behav-
ior and the geometrical nature of the gravitation-
al field. One's experience with Maxwell and Yang-
Mills theories indicates that the contributions of
the new sectors to asymptotic states would have
to be included if one is to obtain a consistent scat-
tering —or, superscattering —matrix description.

To apply this framework, one would consider
the following situation: asymptotic states come
in from g, interact —perhaps form a black hole
which subsequently evaporates —and scatter off
to 8 . One now has a new kinematic basis for
describing such processes. Since the topology in
the "interior" is unconstrained, one might hope
that the formalism would capture interesting phe-
nomena which escape perturbative treatments off
a fixed background. Finally, because the frame-
work has many features in common with the co-
variant, canonical, II space and twistor approach-
es to quantum gravity, even as it stands, it pro-
vides a common platform to compare and con-
trast ideas and formulas that have emerged from
these approaches.

Details will appear elsewhere.
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The masses and widths of S = 0 resonances in the (70, 1 ) and (56, 1 ) multiplets have
been fitted with use of a quark model with hyperfine interactions. Three models for the
decay of these and other states have been examined, and it is concluded that the usual
spectator model for the decays must be modified. No positive evidence is found for a
tensor force, while conflicting evidence is found for a three-body spin-orbit force, and
the (5S, 1 ) mass is lower than expected.

PACS numbers: 14.20.Gk, 11.30.Ly, 12.40.Cc, 13.30.Eg

The quark-shell model of baryons explains
most qualitative features of the baryon spectrum.
There is a gross level structure which can be
identified with the harmonic-oscillator spectrum
and which is split into SU(6)S 0(3) multiplets. '
Splittings within SU(6)ISO(3) multiplets have been
ascribed to quark masses and quantum-chromo-
dynamics- (QCD) motivated flavor-independent
hyperfine interactions. Koniuk and Isgur, using
a simple meson-emission model, have provided
a qualitative fit to many partial widths. ' Here we
reexamine more quantitatively, using newer data,
properties of the M &2 GeV odd-parity 8=0 bary-'
ons along with the elastic widths of several other
leading-traj ectory baryons.

In agreement with the earlier work, we con-
clude that the QCD-perturbed quark-shell model
is qualitatively successful. In detail, however,
our results are significantly different in several
respects: (1) The (56, 1) multiplet is lower than
predicted. (2) We find no evidence for a tensor
force. (3) There is conflicting information about
a possible three-body spin-orbit force. (4) Spec-

tator-independent decay models fail to describe
the elastic widths.

We use as input data results from the Carnegie-
Mellon University-Lawrence Berkeley Laborato-
ry partial-wave analysis~ (see Table I). The main
difference from previous work is that we include
components of the (56, 1) multiplet. The observed
(56, 1) is so low that its octet components mix
strongly with the (70, 1), profoundly altering the
pattern of perturbations involving the (70, 1 ). It
is therefore important to establish whether any
simple extension of current ideas is able to ac-
commodate the extra states. The masses of the
one-star D»(1880) and an unseen S» are uncon-
strained in our fits, but we include upper bounds
on their elastic widths. In most previous models,
the D»-S» mass difference has not been consid-
ered. ' This difference may indicate a need for
three-body spin-orbit forces. '

The Spy partial widths in Table I are quite dif-
ferent from those adopted in previous work or
from Particle Data Group averages. ' There are
smaller differences in other widths. Significant
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