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Linear Magnetoresistance Caused by Sample Thickness Variations
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Experiments are presented which show that surface imperfections can give rise to a
larger linear magnetoresistance than previously supposed; in fact, large enough to ex-
plain many hitherto-unexplained published results. A theoretical model, which takes into

account both the finite width of the sample and the Hal, l fields within it, is shown to de-
scribe the experimental results quantitatively, without the use of adjustable parameters.

PACS numbers: 72.15.6d

The appearance of linear magnetoresistance
(LMR) in simple metals such as K, Al, and ln
has puzzled physicists for several decades. In
the literature there remains the question of wheth-
er this LMR is primarily intrinsic or extrinsic.
Recent interest has centered upon extrinsic caus-
es, for instance magnetic-field nonuniformity
along the sample length' or the presence of vol-
ume defects (voids) in the material. Theoretical-
ly" and experimentally, it has been shown that
macroscopic voids can give an LMR proportional
to the volume fraction of the voids. However, in
carefully prepared samples this volume fraction
is much too small to yield the I MR which is ac-
tually observed. Macroscopic surface defects
have been suggested as additional sources of
LMR, but, again, application of the theory of
volume defects leads to an LMR too small to ac-
count for the usual observations.

In this Letter we demonstrate, both experimen-
tally and theoretically, that there exists an addi-
tional LMR due to surface defects which is large
enough to explain many of the usual observations.
This LMR results from Hall voltage variations
within the sample, an effect neglected in previous
treatments. We present here some of the experi-
mental data which led us to the discovery of this
new effect, and briefly describe our analysis and
the results it yields. More extensive data (includ-
ing discussion of corrections applied for other
magnetoresistive effects) and mathematical de-
tails of the analysis will be published elsewhere. '

Our samples were prepared from very pure
polycrystalline Al plates of 2-mm thickness.
Spark-erosion techniques were used to form bars
of different widths I., with regularly spaced arms
for potential contacts on both sides (Fig. 1 shows
a composite sample). Between some pairs of
arms were machined projections (p) and between
some pairs grooves (g); both crossed the whole
width of the sample. In still other cases the re~
gions between the arms were made wedge-shaped

(to); these specially prepared pieces were always
alternated with flat untreated ones to serve a,s
controls. To remove mechanical damage, the
samples were annealed and a variety of cross
checks were made to establish that the effects
described below were not due to damage intro-
duced during sample preparation.

We made conventional four-probe measure-
ments of transverse LMR with the magnetic field
perpendicular to the plane of the arms. We al-
ways measured potentials on both sides of the
sample (e.g. , V». and V«i in Fig. 1), and our
data were calculated from the average, except
for the wedge-shaped samples, where V». and

Voo. were very different. The temperature (4.2
K), the field (up to 5 T), and the residual resis-
tivity ratio of the samples (around 20 000) were
such that w, w»1, where ~, is the cyclotron fre-
quency and ~ is the relaxation time. As our
measure of the LMR we use the dimensionless
Kohler slope: S = (1/p, )(8[p(B)—p, ]/8 (~,~)]
= (1/R„)(9[p(B)—p,]/BB]. Here p, is the satura-
tion magnetoresistance which would have existed
in the absence of LMR, B is the magnetic field,
and R„ is the high-field Hall constant (R „=1.0
x 10 "m'/C for Al).

For a wedge-shaped sample, our model can be
solved exactly. The predicted magnetoresistivity
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pIG. 1. Composite sample. g, groove; p, projection;
f, flat portion; m, wedge-shaped portion. See text for
further details.
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FIG. 2. Asymmetric behavior of the magnetoresisti-
vity of wedge-shaped sample. p+ and p refer to re-
sistivities from measurements on opposite sides of the
sample (see text). Drawn lines are computed values;
symbols are data points corrected for residual magnet-
oresistivity of flat control pieces.

h, ) =(1/d) f &;dz,

(&,&
= (1/d) f'&, dz =K,./d.

(2)

ls highly asymmetric and not strictly linear ln B.
These features are illustrated in Fig. 2. For a
sample with grooves or projections, the model
predicts a magnetoresistivity which is linear in
B, and this LMR is predicted to be proportional
to (1) the relative depth b. of the groove (or height
of the projection); and (2) the width L, of the sam-
ple. The first feature is illustrated in Fig. 3 for
grooves in a sample of width 3.6 mm. Similar
results were found for two additional widths and
for projections as well as grooves. The second
feature is illustrated in Fig. 4 for three different
sample widths and three groove depths.

We explain these observations by considering a
sample of a homogeneous, uncompensated metal
with no open orbits. The width L,, of the sample
is constant, but its thickness d(x) parallel to the
magnetic field B=B, varies along the sample
length. For P =co,r»1, the transport equations
for this metal are (see, e.g. , Ref. 6)

~.=p.(~.+V,), ~, =p. ( V.+~-,) . (1)
Here E; and J', (i =x,y) are functions of x, y, and
z. We do not use the equivalent equation relating
E, and J,.

These equations are solved by reducing the num-
ber of variables from three to two. This was
previously done" by averaging them over the y
coordinate, i.e. , the direction perpendicular to
both the macroscopic current and the magnetic
field. This procedure yields the usual LMR for
volume or surface defects mentioned above. We,
in contrast, average over the z direction, a pro-
cedure which preserves effects which are other-
wise suppressed. We define

Since we have continuity in two dimensions, (BK/
»)+ (BK,/sy) =0, we can find a function E such
that K„= (sE/sy) and K, = —(8E/sx). The trans-
port equations become

E„=(p, /d)f»/&y P(»-l»)1,
(3)

Z, = (p,/d)[- p(sE/sy) —sE/sx],

where E„(&E/ai), and d depend upon x and y.
We assume that the averaged field is rotation-

free (a detailed discussion of this assumption will
be given elsewhere' ), and call ( Sd/») /d= 1/a.
This gives the equation

O'E B E 1 BE BE,+,———+p —=0.
Bx By' a Bx By

(4)

This equation can be solved exactly in closed
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FIG. 4. Kohler slope S as a function of sample width
L ~ for grooves with fixed values of thickness variation

The straight lines are calculated; the symbols are
data corrected for residual magnetoresistivity of flat
control pieces and LMR due to volume defect" theory
(see text and Ref. 5).
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FIG. 3. Kohler slope S as a function of relative thick-
ness variation 4 for grooves in a sample of width L~
=3.6 mm. The straight line is calculated; the symbols
are data corrected for residual magnetoresistivity of
flat control pieces and LMR due to volume defect"
theory (see text and Ref. 5).
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form if we take a to be constant, which corre-
sponds to a wedge-shaped sample of thickness
d=doexp(x/a). The solutions are

K = —&E/Bx=0,

&E
( /2 )

exp(Py/a)
Sy sinh(PL, /2a) '

where I is the total current.
If we choose axes down the middle of the sam-

ple, then what we measure are the voltages
V„(+I.,/2) at the sides of the sample (y =+L,/2)
between the positions + =0 and@ =L (see Fig. 1).
Calculating E and integrating from 0 to I. gives

Ip, exp(+PL, /2a)
2do sinh(PL, /2a)

x [1—exp( —L/a) j,
where [1—exp(-L/a)]=(d, —d,)/d, = a is the rela-
tive thickness variation of the wedge-shaped sam-
ple (for our sample, 10%). The difference be-
tween these two voltages, V, (-L, /2) —V„(+L,/2)
=(Ip,pA)/d„ is just equal to the difference in Hall
voltage between the place on the sample having
thickness d, and the place having thickness do.
That means that the path integral of the electric
field, and hence the rotation, is zero. Our mech-
anism thus works as follows: The requirement
that the (averaged) field is rotation-free forces
differences in Hall voltage caused by thickness
variations to appear along the length of the sam-
ple, thereby producing a large LMR.

Finally, we define p, = V„(+L„/2)(doL, /LI), and
obtain

(7)

Figure 2 shows that this equation fits the asym-
metric data for our wedge-shaped sample with
no adjustable parameters. Furthermore, these
solutions satisfy the consistency condition that
their average, p=(p++p )/2, is just equal to the
true resistivity defined via the power dissipation
in the sample. '

Since it is clear from Fig. 2 that we can accu-
rately describe the magnetoresistivity for the
wedge-shaped geometry, we apply the same solu-
tions to other geometries. A sample with a
groove or a projection is approximated by two
wedges of opposite slope bounded by flat pieces.
Placing two such wedges in series has the conse-

quence that, seen over the whole sample, the
asymmetry vanishes. Adding the resistivities of
the flat pieces and of the two wedges, and going
to the limit of steep steps (i.e., making a smaller
while keeping b, constant), we get for a single
groove or projection, an LMR of

p(P) =p, (PL, b,/L+1) or S=L,b/L.
We see that S is linearly dependent on 4, the rel-
ative depth (height) of the groove (projection),
and also on the width of the sample. For a sam-
ple with L/L, = 1, and just a single groove of rel-
ative depth b, = 1%, we find S=10 ', which is al-
ready larger than many reported values in the
literature" (S=10 ' —10 '). For a given sample
length, we have checked that two and three grooves
give values of S about two and three times larger,
respectively, than one groove alone. We thus
see that even a single small groove can produce
an S of the usually observed magnitude, while at
the same time the mechanism can account for a
wide variation in values of S, since the width of
the sqmple and the form, number, and orienta-
tion of the defects all exert a large influence.
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