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The incommensurate adsorbed solid is found to become unstable to dislocations when
the lattice period approaches that of a sufficiently low-order commensurate phase such
as a» 1 rectangular overlayer or the (~3&& ~3)B30 hexagonal structure which occurs for
krypton on graphite. In these cases, a fluid phase is expected between the commensurate
and incommensurate solids.

PACS numbers: 68.60.+q, 61.70.6a, 62.20.Dc

There are many two-dimensional (2D) systems
in which a transition occurs from a registered
phase, where the lattice constant of the "adsor-
bate" solid is commensurate with that of the "sub-
strate, " to a phase where it is incommensurate.
Theoretical descriptions of the commensurate-
incommensurate (C-I) transition in 2D systems
have been given by several authors. ' ' In this
paper, however, we show that near the lowest-
order commensurate structures, the incommen-
surate solid becomes unstable to the formation of
dislocations, and the description of the C-I tran-
sition must be revised accordingly. While the re-
sults may apply to other systems, such as charge-
density waves in layered compounds, we will for

clarity work in terms of atoms adsorbed on a sub-
strate.

We will consider three types of adsorbate phases
which can be distinguished by nature of singulari-
ties in the structure function S(q). In the fluid
phase, the only singularities in S(q) are of the
form 5(q —Q), where (Q) is the set of substrate
reciprocal-lattice vectors. For the floating ("in-
commensurate") solid, in addition to Bragg peaks
at (Q), there are power-law singularities charac-
teristic of a 20 solid of the form

&(q)-lq-G-Ql """",
where gG(T) ~ G'T independent of Q. The set (Gj
is the set of reciprocal-lattice vectors of the ad-
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soxbate which vary continuously with temperature
T and with the adsorbate chemical potential f
For the registered commensurate solid, the sets
{Qjand {Gj have elements in common and there
are 5 function Bragg peaks at all Q+G. Two pos-
sible phase diagrams containing these states are
shown in Fig. 1.

We shall first discuss the case of a rectangula~
adsorbate solid on a rectangular substrate. We
assume that the commensurate phase is a (P x 1)
structure; i.e. , the adsorbate lattice constant in
the x direction is P times the lattice constant a
of the substrate, while the substrate and adsor-
bate have identical lattice constants c in the y di-
rection. (Later we shall discuss the C-I transi-
tion for a v 3 x v 3 hexagonal adsorbate on a bexag
onal substrate, such as occurs for krypton on
graphite. ') The incommensurate solid in the rec-
tangular case is assumed to have a lattice con-
stant Pa(1 —5) along x, where 5 is small (with 5
& 0 for definiteness), while the y lattice constant
remains locked to the substrate. The incommen-
surate solid in this case can be obtained from the
commensurate phase by the addition of a small
density of domain avails, parallel to the y axis,
with spacing I =a/»&Pa. (The domain walls sepa-
rate commensurate regions shifted relative to
each other by one unit of the substrate spacing a,
and therefore, they produce on average a fraction-
al change -a/l in the adsorbate lattice constant. )
A single wall has a characteristic width, u, and
a free energy per unit length, f, which includes
the entropy from the wall meandering [see Fig.
2(a)]. The interaction energy between two walls
falls off ase ' and hence is negligible if l is suf-
ficiently large. When the chemical potential P
& g, =pcf the registered phase will be unstable to
the formation of domain walls and will become in-
commensurate. As shown by Pokrovsky and co-
workers, ' there is an effective repulsion between
the walls due to the loss of meandering entropy

caused by walls approaching to within Ml of one
another. This gives rise to a term in the free en-
ergy per unit area, f, proportional to 1 3, which
for T &0 dominates the exponential wall-wall in-
teraction energy as l - . The resulting effective
interaction stabilizes the wall density at a finite
value I '~ (t; —g,)'". We are thus led to consider
the long-wavelength ela, stic properties of the in-
commensurate adsorbate in the limit l- .

In the registered phase, long-wavelength strains
will cost an energy linear (rather than quadratic)
in the strain; the effective elastic constants are
therefore infinite because of the presence of the
substrate. This is also true for displacements u,
in the incommensurate phase, because of registry
in the y direction. We thus need only consider
displacements parallel to x, u (r) = u„(r), about the
average incommensurate positions of the atoms;
the elastic constants associated with these strains
will be finite.

On scales much larger than l, the elastic free
energy in the incommensurate phase can be writ-
ten (in the absence of free dislocations)

I' =2 fd'r-[K, (a„u)'+ K,(s,u)']. (I)

Alternatively, we could instead consider the dis-
placements u(r) of the walls from their average
positions and write a long-wavelength elastic free
energy for the walls,

r =-,' jd'r[K„(s„u)'+ K,(e,u)']. (2)

At long wavelengths, a wall-displacement u will
produce an adsorbate displacement u = Qa/l, so
that the elastic constants are related by K„,
=a'/ 'K„, . The elastic coefficient E, arises
from the bending energy of the walls and K, ~ T'/
K, /' from the loss of meandering entropy due to
the collisions between walls discussed above. It

A iB
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Flo. 1. Two possible phase diagrams in the tempera-
ture —chemical-pote ntial (&-f) plane.

FIG. 2. Configurations of domain walls: (a) Parallel
array" for the 3&&1 structure, including a dislocation;
{b) Honeycomb array" for a ~3& ~3hexagonal phase.
Domains A, B, and C correspond to the three possible
occupied sublattices of adsorption sites.
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P2s~(/i' If )i+/8++ ~ pa/8 (3)

as,f
The Kosterlitz- Thouless criterion4 for stability

of the solid against formation of free dislocations
with the minimum Burgers vector 5 =pa requires
that the left-hand side of Eq. (3) be no less than l.
Since this criterion is violated for p =2, we see
that there cannot be a direct second-order transi-
tion from the 2 &1 structure to an incommensu-
rate solid, at any T &0. This suggests the phase
diagram sketched in Fig 1(b.), where a fluid in-
tervenes between the commensurate and incom-
mensurate structures at all T & 0. Interactions
between the domain walls will stiffen the elastic
constants and resolidify the incommensurate
phase as /

' increases. The width in f of the
fluid phase will decrease exponentially for T -0.

For p =3, the Kosterlitz-Thouless criterion is
consistent with a second-order transition from
the commensurate to incommensurate solid. How-
ever, if the dislocation core energy is low, the
presence of bound dislocation pairs at moderately
high temperatures may cause the elastic con-
stants to drop below the value calculated from the
domain walls above, and might lead to a dip in the
fluid-phase boundary near the C-I transition, as
indicated in Fig. 1(a).

We could also have reached the above conclu-
sions by considering the instability of the array
of walls to a group of P half-walls terminating at
a point, as shown (for p =3) in Fig. 2(a). [Micro-
scopically, this is exactly a dislocation with
Burgers vector & = (pa, 0) considered above. ] The
free energy of this configuration and the resulting
instability for P'& 8 could be calculated from the
wall elastic free energy [Eq. (2)] without refer-
ence to the microscopic structure at all; this
method will be useful in considering the hexago-
nal system.

We now turn to the second case to be consid-
ered: a hexagonal (v 3 x~3)R30' adsorbate phase
on a hexagonal substrate. The C-I transition may
again proceed by the formation of domain walls,
but nom there will be three types of walls having
different preferred orientations. It is hence nec-
essary to consider the free energy f& associated

can be shown that K, ~l - ; and thus K ~ l '- 0
Qs l~ o.

Schulz' has studied the correlation function for
the translational order parameter p(r) =—exp[2miu(r)/
/] and has found (p(r)p(0))- (I/r) ", for large r,
with q- 2 in the limit /»w. Since j=2&/'T/
(K„g,)'", it follows that

with wall intersections. If f& &0, the transition is
presumably strongly first order and not of inter-
est here.

At first it appears that fi )0 implies that the
lowest free-energy configuration with a small
density of walls is an array of parallel walls with
no intersections, yielding an anisotropic lattice
or "striped" phase. However, Villain' has point-
ed out that a honeycomb array of all three types
of walls has large configurational entropy per
unit area arising from various possible positions
of the wall intersections. Neglecting terms of
order / ', where / is the average length of a hexa-
gon side, we have (following Villain)

2l ' lf = —{& f)—+ 2f& -BZ'ln-
3v3 i~' a'

where the expression in square brackets is the
free energy per hexagon, a' is a length of order
a, and f has been conveniently normalized. The
quantity B In(//a') is the entropy per hexagon of a
honeycomb array of walls, when the walls are
constrained to be parallel to the three 120' axes,
and the number of hexagons and total area are
specified, but the positions of the vertices are
otherwise free." A typical configuration of this
type is shown in Fig. 2(b). It can be shown ana-
lytically that B =1, and Monte Carlo computer
simulations confirm this result. ' The equilibrium
value of / is obtained by minimizing f.

According to the Villain picture, there will be
a first-order transition from the commensurate
phase to the honeycomb incommensurate phase at
a chemical potential 0, = f, —Ta'//„where /,
=-a' exp(1+2f&/T) is the value of / at the transi-
tion. The free energy of the honeycomb lattice
remains smaller than that of the striped phase
until f =g~,„=g,+0(/, 41'), at which point/=/, /e'". If fi/T is large and positive, the transition
will be very weakly first order and l, will be
large. In this limit, we are thus justified in ig-
noring terms in f of order /

' and can calculate
the long-wavelength elastic properties of the sys-
tem in terms of the superlattice. The honeycomb-
superlattice elastic-free energy ignoring disloca-
tions will be of the form'

E = —,
' ld'r[ —,

' n(s,.u, + a,.u, )'

+Z(V u)'+Z(V ~u)'],

where u(r) is the displacement of the superlattice
hexagon at r from its average position and p and
~ are the Lamd' coefficients. The third term of
Eq. (5) with elastic coefficient y is the free ener-
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b'[P(P+~)/(2P+9+ Pr/(P+r)]«~T ~ (6)

For the v 3 && v 3 overlayer under consideration,
the minimum Burgers vector consistent with the
labeling of the hexagons A, B, and C [see Fig.
2(b)] has b=3l; this corresponds to a dislocation
in the adsorbate lattice with minimal Burgers
vector b, =a@3. With y=~ and the calculated
values of p. and X for &= &„ the left-hand side of
Eq. (6) is equal to 2.5T which is considerably
less than the right-hand side, and we find that
the slightly incommensurate phase is unstable
to dislocations and hence is a fluid.

We thus conclude that the incommensurate
phase sufficiently close to the C-I transition of
a. (v 3 x v 3)fl30' hexagonal overlayer will be a

fluid at all temperatures, provided that the C-I
transition is ~cally first order, i.e. , the super-
lattice period l, is large. The phase diagram in
this region will be similar to that for the 2 &1
C-I transition discussed above [see Fig. 1(b)].
Implications of the results obtained here on sys-
tems of experimental interest will be discussed
in a longer paper, in particular with reference
to recent x-ray scattering experiments on kryp-

gy of rotation of the superlattice. It can be shown
that y is infinite relative to p and A. in the limit
l —~. The "bulk modulus" (P. +A) is equal to
4 l2d—'f/dl2, and one finds that l2(P, +X)/T increas-
es monotonically from the value 1/6v3, for &= &„
to I/3v 3, for g= g, . The value of j has been ob-
tained from a Monte Carlo simulation, and we
find that l2P/T =0.21 independent of &.

' We note
the unusual result that the system has a negative
Poisson's ratio (i.e. , X &0).

Any 2D solid with an elastic free energy of the
form Eq. (5) will be unstable to the presence of
free dislocations with Burgers vector b if'
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