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Method for Performing Monte Carlo Calculations for Systems with Fermions
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A method is presented for carrying out Monte Carlo calculations for field theories
with fermion degrees of freedom. As an example of this technique, results are given
for a simple one-dimensional model.
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Recently Monte Carlo calculations have been
used to study a variety of field-theory problems
in condensed matter and high-energy physics. To
date this technique has been applied only to boson
systems. The difficulty with treating fermions is
that in the path-integral formulation of field theo-
ry, they are represented by anticommuting c-
number fields which do not lend themselves to di-
rect numerical calculations. However, Fucito,
Marinari, Parisi, and Rebbi have just made a
very interesting proposal for performing Monte
Carlo calculations of systems with fermions. ' In
this note we present an alternative, but closely
related, method for carrying out such calcula-
tions. We illustrate our approach by studying a
simple one-dimensional field-theory model.

Let us consider the interaction of a boson field
A, with a fermion field (,. We work on a lattice
and the subscripts on the fieMs refer to the lat-
tice points. For simplicity we suppress spin and
internal-symmetry labels. We take the Euclidean
action to be

S=S.(A)+ Z g, O, , (A)q, .

The matrix 0 contains the kinetic-energy terms
for the fermion field as well as the coupling terms
between the boson and fermion fields. It is cru-
cial that the action be bilinear in the fermion

field. Most systems of interest are of this form
or can be reduced to it by the introduction of aux-
iliary fields.

In the usual way, we start by integrating out the
fermion field. For example, the fermion correla-
tion function can be written as

(g,gi) = z ' f6A 6$ 5$ exp(- S)g, g&

=~ ' f5Aexp[- S,(A)][O '(A)]„det[O(A)],

where z is the normalization integral

s = J5A 5g5g exp(- S)

=f6A exp[- S,(A)] det[0(A)].

Clearly, all quantities of interest can be obtained
from functional integrals with respect to A with

an effective action given by

exp[- S,«(A)]=exp[- S,(A)] det[0(A)]. (4)

Of course, Etl. (4) makes sense only if det[0]
has a definite sign.

Let us now imagine carrying out the functional
integral over A with use of the Metropolis Monte

Carlo method. ' We wish to bring the system into
equilibrium with the probability of any field con-
figuration A being proportional to exp[- Set f(A)].
To this end we repeatedly generate random chang-
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es in A, A -A+ 5A, which in turn generate chang-
es in the matrix 0, 0(A) -0(A+ 5A) =0(A) + &O.

We accept or reject such a change depending on
whether the quantity exp[- S,«(A+ 5A) + S,qf(A)]
is greater or less than a random number between
0 and 1. To make this comparison we must eval-
uate the ratio of determinants

L = det [0(A+ 5A) ]/det[ p(A) ]

= det[1+ G(A)60],

where G(A) = p '(A). At first glance, the calcula-
tion of 4 appears to be prohibitively lengthy be-
cause on a lattice with N sites, G and 50 are N
~ N matrices.

Fucito et al. ' suggest that we restrict ourselves
to small variations in A, so that 50 will be small.
Then ~ =tr(G 50). They further suggest that the
elements of G can be obtained from a Monte Carlo
calculation by introducing an auxiliary boson field

p governed by an action

It would appear that the major difficulty with
the proposal of Fucito et al. is the restriction to
small variations in A. One can easily imagine
systems with more than one local minimum in
S f f(A) which it would be difficult to leave by
making only a succession of small variations in

A. However, we can eliminate this restriction.
In practical Monte Carlo calculations, one sweeps
through the lattice, making a change in A at one
lattice site (or on one lattice link) at a time. In

a theory with local couplings a change in A at the
site l will induce a change in 0,, (A) only for val-
ues of i and j in the vicinity of l. By writing 6
in the form L=exp[tr ln(1+ G60)] and expanding
the logarithm as a power series in G 50, we see
that if 50,.&

is nonzero only for L values of i and

of j, then in order to obtain 6, we need only cal-
culate the determinant of an L & L matrix. In
particular, for nonderivative couplings, a change
in A at the site l will induce a change in 0 of the
form 50,.&-—c6, , 6... so that

at some particular field configuration A. Then

(8)G(A+ 5A) = G(A) —G(A)(50)G(A+ &A).

If 5Q has only L' nonzero matrix elements, then

Eq. (8) can be solved for G(A+ 6A) simply by in-
verting an L&& L matrix. For our special case of
nonderivative coupling,

G,&(A+ 5A)

=G,&(A) -G, , (A)G»(A)c[1+ cG»(A)] '. (9)

N

S, = QA, 0;;(A)=D;,+(m+gA )5...
where the derivative matrix, D, , , has D„.= 2,

Dy g D p j
' —1, and al l other ele

ments zero. In Table I, we compare typical re-
sults of our Monte Carlo calculation of the fermi-
on correlation function with the exact answer,
which is easily seen to be

c(i —j)= g; (,.= [D+(m+ —,'g)I],.
q

'.

The results shown in Table I are for no =g=1,
with N =10. They were obtained by making 1100
passes through the lattice. The first 100 were to
allow the system to reach equilibrium; thereaf-
ter, data were collected every tenth pass.

Although the above procedure worked extremely
well for our one-dimensional model, we do not

expect it to be directly applicable to multidimen-
sional systems. It simply takes too long to up-
date the N&& N matrix G,.~(A), even by so simple

TABLE I. The fermion correlation function defined
in Eq. (11) for g= m = 1. In column 1 we give results
of the Monte Carlo calculation described in the text;
and in column 2, the exact result.

An extreme procedure would be to start the cal-
culation with a trivial field configuration, such
as a constant A field, so that G(A) could be ob-
tained analytically. Then update G, &

each time
A is changed with use of the exact formula of Eq.
(8) or Eq. (9). We have applied this procedure to
the simple one-dimensional model defined by

6=1+ cGg, (A).

Thus, the restriction to small changes in A is
eliminated.

At this point one could simply adopt the pro-
posal of Fucito et al. and obtain the needed ele-
ments of G, , (A) by a Monte Carlo calculation.
However, it may be useful to take further advan-
tage of the locality of 6Q. Suppose one knows G

c(0)
c{1)
c(2)
c(3)
c(4)
c(5)

Monte Carlo

0.3492
0.1099
0.0346
0.0110
0.003 75
0.002 15

Exact

0.3482
0.1093
0.0343
0.0109
0.003 71
0.002 12
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a formula, as Eq. (9). We can, however, imagine
dividing the lattice into p blocks with N/p sites
per block. As we sweep through the lattice, up-
dating A at each site, we can calculate G„. within
a block by a Monte Carlo calculation as suggested
by Fucito et al. , but at each step within the block
we can update G,&by Eq. (8) or Eq. (9). We will
thus have to make p, rather than N, Monte Carlo
calculations during each sweep through the lat-
tice, and in our recent updating of G, &

we will
only have to work with an (N/p) && (E/p) matrix.
The optimum choice for p will, of course, depend
on the system being studied.

Finally, we remark that it may be possible to
find alternative methods for calculating the ma-
trix elements of G. For example, consider the
equation

rapidly. For example, in the model which we
have discussed, the elements of g satisfy a three-
term recursion relation which can be solved in
2N steps, a considerable saving over the N' steps
necessary to update the matrix G by Eq. (9); Al-
ternatively, one may be able to solve Eq. (12)
rapidly by relaxation methods.

Although it is far from clear that we have ar-
rived at the optimal procedure, it does seem cer-
tain that these techniques can be applied to a num-
ber of interesting systems, particularly lower-
dimensional ones in condensed-matter physics.
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where g and h are N-component column vectors.
If we choose the elements of h to be h,. = 6,.&, then

g,.= G&&. Since () will generally be a very sparse
matrix, it may be possible to solve for the g,.
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