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Sound propagation and damping are studied near the spin-glass transition for a time-
dependent Landau-Ginzburg model coupled to phonons. The sound speed decreases linear-
ly with I'-T~, and the sound damping diverges as (&-&~), when the spin-glass transi-
tion, 1'~, is approached from high temperatures. At the spin-glass transition, the sound
speed has a term proportional to , and the sound damping is proportional to ~

PACS numbers: 75.40.Dy, 62.65.+k

The spin-glass (SG) phase was proposed by Ed-
wards and Anderson (E-A)' to explain the low-
temperature properties of some amorphous mag-
netic alloys. According to E-A, the phase is
characterized by a nonvanishing value of the dif-
ferent time correlation of a spin at a given site
so that the spin may be visualized as being frozen
in time. In view of this picture, the dynamics of
spins are of considerable interest in understand-
ing the phase transition. Several authors2 ' have
studied spin relaxation and damping near the spin-
glass freezing temperature, 7.",. In this Letter,
we study propagation of sound with a view to in-

vestigating spin dynamics in and just above the
spin-glass phase, and we report results on the
propagation velocity and damping of sound for a
simple model. Our result for the temperature de-
pendence when the SG transition is approached
from above T~ agrees with the observed decrease
in the sound speed."There are no systematic
data for the frequency dependence of the speed,
nor on the sound damping; we encourage work to
test our prediction.

We stud. y a time-dependent Ginzburg-Landau
(TDGL)s'" ' model. If v(x) is the local spin densi-
ty and g(x) a longitudinal phonon field, then the
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model is defined by the Hamiltonian
d

a =f[d'x/(2~)'] ~([r, + q (x)]v (x, t) + )~a(x, t)! + ~ u[o(x't)'J2+ C ' g [8 yi" (x t)]'+!Il(x, t)!'

+g am(x, t)V g (x, t )'t+ fd "x[Iz(x,t)v (x, t) +f (x, t) g (x, t)],
where II(x) =8//st is the phonon momentum densi-
ty. cp(x) is a time-independent Gaussian random
variable

(y(x)cp(x')), =&5(x -x').
[We denote configuration average by angular
brackets with a subscript c.] When g, is zero,
the phonon field, g (x), has the usual form of a
free massless field. For this case, the spin dy-
namics near the spin-glass transition are known. '
When go is not zero, the coupling term may be
looked upon as producing a local change in ro.
The change depends on the sign of the gradient
which, in a lattice picture, says that the exchange
interaction is enhanced when neighboring spins
move towards each other.

The spin dynamics are described by the Lange-
vin equation of motion,

so(x, t)/st = I',511/&-v(x, t) +l(x, t). (2a)

For phonons, we take an ezluation of motion simi-
lar to that of a randomly driven, damped harmon-
ic oscillator,

et 5$(x) ~' 5II(x, t)

g(x, t) and $ (x, t) are statistically independent
noise sources for the spins and phonons, respec-
tively, and their statistics are related to the re-
spective kinetic coefficients I', and yo by the Quc-
tuation-dissipation theorem:

(g, (x, t)g, (x', t')) =2I',&(x-x')&(t t')5,-, , (3a)

(g „(x,t)f,(x', t'))
=- Ry,V2&(x -x')5(t -t')&„,. (3b)

In Fourier space Egs. (2a) and (2b) have the expli-
cit form

/

go~ 12 p 2 ~z(q q ~~ ~ R'qp 0"(q ~~)]'

d g
(2 )u P(q —q')a;(q', (u)+(p/I )(q (u)+tz (q ~)

(- i(ay, q' —~'+ C,'q')y„(q, (u) = pi(gq„)Z f[d "q'/(2m)" ]f(d(u'/2n)o;(q', (u')o;(q —q', (u —&u')

(4a)

[Latin subscripts stand for the components of
spin, o, and Greek subscripts for the components
of displacement, ((x,t).] In zeroth order, the
response functions G =5(o)/5Iz and D =5(g)/5f are

G'(q, (u) = (- i(u/I', + r, +q') ',
D'(q, (u) = (—~'+c,'q'- i(uy, q') '.

(5a)

(5b)

We are interested in sound propagation and
damping. To this end, we solve Eqs. (4a) and (4b)
perturbatively for g(q, zd) and obtain the phonon
self -energy. The diagrammatic representation
of the perturbation series follows naturally from
the similar treatment of TDGI models. '' In Fig.
1, a double wavy line stands for the full phonon
response function, D; a single wavy line stands
for B'„' a solid line stands for the spin response

+&(q, ~) +f(q, ~) (4b)

! function, C; and a dotted line stands for the ran-
dom field p. To zeroth order in the spin-phonon
coupling, g„and at the mean field level in the
spins, '' the frequency dependence of the spin re-
sponse function G is obtained from the self-ener-
gy diagram which is of first order in 6, i.e. ,

G(q, a)) = [~,+q' —Z((u) —za)/I', ] '

=- [-i(o/I'((o)+G '(q, 0)] ',

where

z((o) =a f[d"k/(27')")[ i(u/I'((o)-+G '(0, 0)] '.
We can solve these self-consistent equations for
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I'((()) and, to lowest nontrivial order, we have''

I'(~) 1 —
xI( ()

4i~v, )'"
I

( )

where X=6,ll(0, 0), II(0, 0) = f[d'k/(2')~]G'(k, 0),
and ~,t', = t)—f[d~k/(2')"]G'(k, 0). (The character-
istic time Tp is only a weak function of tempera-
ture. )

For large (()[vv, » (1 —X)'j, I'(&o) shows the (d'~'

behavior typical of the spin-glass transition. ' '"
The transition to the SG phase takes place"' when

1 =af [d'k/(2m )"]G'(k, 0),
so that

1 —Xcf t =—T —7.' .

FIG. l. Expansion for the phonon response function.
Dotted lines with a cross stand for configuration average
of random p fields.

Figure 1 shows some diagrams contributing to
the phonon self-energy in lowest order in the
spin-phonon coupling. Here we sum all the ladder
vertex corrections inside the bubbles at both ends
and across the noise vertex. To order q' in ex-
ternal momentum, this sum is

2 dv f[d~k/(2m)~]G(k, v)G(-k, —v)G(k, (u —v)
I', 2m [1-t) II(v, u& —v)][1-611(v,—v)][1-b II(- v, &u —v)] '

mhere

II (v, v') = f[d'k/(2w)"] G(k, v) G(- k, v').

Then by summing the chain of bubbles arising from the four-spin vertex, u, we have

A((d) = -g, 'nB (ro)/[1+u(n+ 2)B((o)]

for the phonon self-energy. Thus the full phonon response function is

D '(&u) = —(d'+ q'[C, '+ ReA(~)] —i[(dy, + IrrA(&u)] q'—= —(d'+ [C'((L)) —itsy(v)] q'.

(8)

B(O) (10)

for the leading contribution of a bubble. From
Eqs. (8)-(10), we find that the sound speed de-
creases as t, as me approach the SG transition
from above T . Experimental data also suggest a
similar behavior.

(ii) For a finite external frequency, &u, we ex-
amine Eq. (7) at t =0. Using (6), we obtain

B((u)~ (—i(d) '~'

The real part of (11) says that the sound speed
has a ~' ' dependence on frequency and the imag-
inary part gives anomalous damping, i.e. , in Eq.
(9), y(~)

(iii) Crossover: The behavior of the sound
speed changes from linear in t [as in (i)] to tem-
perature-independent v'~' behavior [as in (ii)],

Our results for sound propagation and damping
are as follows:

(i) At zero-external frequency and T &T„ the
dominant frequency dependence in the integrand
of Eq. (7) comes from factors of [1-iI)II(v', —v)] '.
These factors are independent of v in the region
v«t'/~„adn-v ' 'in the region vt»'/v, .
Thus a simple dimensional analysis gives

with the crossover frequency =t'/v, . This is
sketched in Fig. 2. The sound damping, y, grows
like 1/t for (d&t'/r» and for (d&t'/~» it shows
the anomalous (() '~' behavior discussed in (ii).
The anomalous sound damping and the v+' ' fre-
quency dependence of sound speed for ~ &t '/~,
may be traced back to the (d ' ' tail" in the cor-
relation function.

(iv) If we accept that

1 =t)11{0,0) (12)

throughout the SG phase, "'"then the sound speed
and damping in the SG phase have the same value
as at the transition temperature T .

These results, obtained from a calculation in
lowest order in gp', agree well with the observed
decrease in the sound speed at high temperatures.
There are no data for the frequency dependence
of the sound speed and it mill be interesting to
see, for the validity of our high-temperature cal-
culation, if our prediction of a co' ' behavior
holds. It will also be interesting to see the anom-
alous damping near the transition temperature.

We are investigating the higher-order terms in

g, '. These terms are divergent (- 1/t) at (and be-
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FIG. 2. Temperature dependence of the sound speed
for different values of external frequency.

low) T, . Therefore, the results presented here
hold only down to some temperature T (g, ) = T

2
0 g

+ const g, . The low-temperature problem is un-
der study.
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