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An exact mapping is constructed of the site~diagonally disordered electron system onto
a renormalizable field theory of interacting matrices. The matrix model that emerges is
the same as for off-diagonal disorder, and it is therefore concluded that for diagonal dis-
order also there is a kind of local gauge invariance near the mobility edge.
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We consider the Anderson model of a disor-
dered electronic system defined by the single-
particle Hamiltonian

H=E H'rr'l”xr,l’ Hrr’:erﬁrr'+vrr' (1)
ryr' }
on a d-dimensional lattice |#). The energies €,
are taken as Gaussian-distributed random vari-
ables

Ple,]=N"texp{- (1/2y)} €,?} @)

and the real symmetric matrix v,,. is fixed and
of short range. It is well known that the aver-
aged Green’s functions of this problem can be
mapped onto spin-correlation functions of a Lan-
dau-Ginzburg model. This has led many authors’
to suggest that the mobility edge, which in a dis-
ordered electronic system separates extended
from localized states, can be described by the
critical point of this Landau-Ginzburg model.
However, all these attempts have been shown to
fail,? mainly because they predict a long-range
behavior of the one-particle Green’s function
which is hard to reconcile with its known analytic
properties. On the other hand, Wegner® recently
has introduced a model in which both €, and v
are treated as random variables. It has been

rr!

2 n

7' p=1la=1

shown that this problem leads to a matrix model*
well suited for a field-theoretic analysis.® How-
ever, in Wegner’s model the short-range nature
of the averaged one-particle Green’s function
Gglr,7') is built in from the outset since the en-
semble is invariant under local gauge transforma-
tions |7) == |7).

Reconsidering the problem of pure diagonal dis-
order, we therefore are faced with the following
questions: (1) Can we construct a matrix model
in analogy to the work of Schafer and Wegner ?*
(2) Is Gzr,7') of short range, thus justifying the
use of the locally gauge-invariant models?

(3) Can we give a simple argument explaining the
failure of the spin models? In this Letter we
present the main results of an analysis of these
questions. The details will be given elsewhere.

We first recall the representation of the Green’s
functions {(E, -H) H,((E,-H) *(E,,~H) "), aver-
aged over disorder, in terms of Gaussian inte-
grals. We specialize our treatment to two ener-
gies (p=1,2),

E,=E -3g,w, g,=(=1/i, w>0, (3)

referring to the advanced and retarded quantities.
Application of the standard replica trick, fol-

lowed by an integration over the disorder field

€, leads to a generating function®*® F

F= —lnfD[e]P[e]fD[S] exp{-:22) ) Z}g,Sa’(T)(E,,—H)rrrsa”(f’)}, 4)

where the index a runs over » replicas for the spin fields. The averaged one-particle and multiparti-
cle Green’s functions follow as pair and multipoint spin correlations, defined in the usual way, in the
special limit of zero (»=0) replicas. We notice that in this particular representation the convergence
of the integrals is guaranteed by the imaginary part of E,.

With use of Gaussian weight, Eq. (2), the integrals over €, in (4) are readily performed, yielding the
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Lagrangian
L[S]=3% Z) Eg,s P)NE =32, w)8,, =0, 1S 0") —872{2 Z)g,, S )P (5)
rr! a=1p=1 ry $P=la=1

Equation (5) closely resembles the Landau-Ginzburg-Wilson Hamiltonian used to describe critical phe-
nomena. We want to point out here that this resemblance is misleading in so far as any approach work-
ing divectly with the spin fields is likely to violate the symmetries of the problem.

Wegner was the first to stress® that the Anderson problem involves a continuous symmetry. For w
=0 the Lagrangian (5) is invariant under transformations of the group O(z,x), i.e., under all opera-
tions which leave (SV)* - (S®)? invariant. The term —$w}},g,%(S?)* breaks this invariance, and the
quantity conjugate to w is easily identified as the density of states p(E). For all energies inside the
band the symmetry therefore is spontaneously broken by p(E)+ 0, down to the level O(#)xO(n). Thus
invariance with respect to operations mixing S* and $(® is lost; rotational invariance in the subspac-
es p =1 or p =2 separately is not affected, however. To set up a perturbative treatment we now have
to choose some mean-field approximation incorporating the broken symmetry. Clearly, in this ap-
proximation at least one of the vectors S®) must be nonzero, and this immediately leads to a breaking
of the O(z) symmetry in subspace p which should be left intact in a correct treatment. Within the spin
formulation no mean-field approximation incorporates the correct symmetries. A more detailed anal-
ysis shows that as a result unstable modes are present which want to restore the O(z) symmetry. This

explains the failure of the spin models.

Following Ref. 4, we now transform to a matrix model. We decouple the quartic term

Ep p’Ea a'(G 1/2

R %5,25,»')? in L[S] by a Gaussian transformation introducing a matrix field @,,”*' ().

Integrating over the spin fields we find the effective Lagrangian

L[Q]=(

where the trace includes summation over p, a,
v, and E,v are unit matrices in p,a. The ma-
trix g is defined as g,,/** =6,,:0,,:g,. The main
problem that one faces here is to specify a do-
main for the @ matrices such that convergency
and symmetry requirements are fulfilled. As a
general remark, we can see from symmetry that
the integration over composite variables @ (»)
should be invariant under the transformation
Qw)=g"*TQ )T *(g")*2, where T &T,,**") is
an element of the group O(z,n). Furthermore,
since @ replaces the »(2x + 1) different compo-
nents of g,"/*S.*S,*'z,."/*, we get the correct num
ber of independent components of @ by writing

QW)= g"*Tw)P )T *(r)(g "), (7)

with both T (») and P (r) real symmetric and in ad-
dition P(r)=6,, P, @), T r)=On,n). The par-
ticular representation of Eq. (7) is suggested by
the saddle point equation of L[Q], from which one
concludes that the “longitudinal” components P ()
are massive, whereas the 7 () are massless for
w =0. For a certain range of energies E and for |

%Tr 1n{(E —€o— gpo)érr’ =Vypt = P(?") —T'l('r}l),,r[T(Y') - T(V)]},

which then is expanded with respect to the last part of the argument.
proceeding according to powers of T(') =T r)=(r —7'),,
the mobility edge only terms up to second order need to be kept.

(2y) ' TrQ*(r) - (w/2y) TrgQ i) +3 TrIn{[E - Q &)]5,,, -

rr'}3 (6)

nonzero w, the saddle point can be written as
Qs.p,z Po >0, (8)

The real (¢,) and imaginary part (p,) are deter-
mined by a coherent-potential-approximation-
type equation which is the equivalent of the n =
limit of Wegner’s® n-orbital model. The @
obviously fulfills the desired symmetry proper-
ties: It is invariant under O(xn)x O(») but not un-
der O(z,%n)/[O()xO@)], thus providing a valid
starting point for perturbation expansion, analo-
gous to that of Oppermann and Wegner.” Equa-
tion (7) will now be employed by shifting

Por)=Q,, +Pw). ©)

We stress that with the choice (7)- (9) the deriva-
tion of L[Q] has been carried out in such a way
that all integrals are manifestly convergent.

Having identified the massive fields P(») and
massless ones T (), we next seek for an effective
Lagrangian in 7'(#), which formally follows after
integration over P(r). Using (7)-(9), we can
write for the interaction term in L[Q],

6#9’6aa'(gppo +eo), €q real,

(10)

This expansion has the virtue of
and thus in the critical region near
However, it has the drawback of

a”T(y)-}---.
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violating a local gauge invariance of the model.
The model (6)-(9) is rigorously invariant under
the transformation T (v)—~ T (#)O (), where O ()

is an element of O()X O(). This invariance is
no longer manifest in the expansion. However,
analyzing the coefficient of the (3,)* term of the
effective Lagrangian for the T () fluctuations we
can show rigorously that the gauge-invariance—
violating terms cancel by virtue of a special sum
rule of the disordered electron problem. The ef-
fective Lagrangian then can be written in the form
of the nonlinear ¢ model,

L[0]=nTr(s,00,0), (11)
where
OW)=Tw)gT ‘(). (11a)

For the coefficient n we find a rigorous but com-
plicated expression of (noncritical) correlation
functions of the P fields. Evaluating this expres-
sion in saddle point approximation the form
2

=%—°d‘72, 7Ol E —eq—ipo=0,,.)YM|%  (12)
results, which is a coherent-potential-approxi-
matlon—type expression for the conductivity.

Since L is of the same structure as the nonlin-
ear ¢ model derived in Ref. 4 for a case in which
both €, and v,,, are random, we conclude that the
diagonal-disorder problem and the off-diagonal-~
disorder problem with real symmetric v,,. (real
matrix model) should show the same properties
near the mobility edge. We may interpret this
result as a proof that the diagonally disordered
Anderson model in the asymptotic scaling region
possesses the invariance with respect to local
gauge transformations |#) -~ |#), which is an es-
sential feature of Wegner’s models.

Calculating in our formalism the averaged one-
particle Green’s function, we find that the range
of this function stays finite order for order in
perturbation theory. Thus for the critical (i.e.,
long-range) behavior the gauge-invariant models
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are valid.

After completion of this work, we came to know
a recent preprint of McKane and Stone® in which
they also conclude that the diagonal-disorder
model leads to the Lagrangians (5) and (11).
Their argument, however, is purely formal inso-
far as they neither specify the set of matrices
nor present a formulation free of convergence
problems.
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