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Observation of Chaos in Optical Bistability
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Optical turbulence and periodic oscillations are easily seen with a hybrid optically bi-
stable device with a delay in the feedback. The behavior of these instabilities is in good
agreement with the recent work of Ikeda, Daido, and Akimoto, who predicted them for
both ring-cavity and delay-line hybrid devices.

PACS numbers: 42.65.-k

In the last few years there has been a substan-
tial theoretical and experimental effort on optical-
ly bistable systems (i.e. , devices which exhibit
two distinct states of optical transmission). Re-
cently, Ikeda, Daido, and Akimoto" have pointed
out that intrinsic bistable devices with use of a
ring cavity are described by difference equations
and that the stability analysis of steady states in
that case is different from the usual criteria ap-
plied to differential equations. This causes insta-
bilities to arise in steady-state solutions that
have previously been described as stable. ' Fur-
thermore, the time dynamics in such circum-
stances can be chaotic. In this Letter we de-
scribe experiments on an optically bistable hybrid
device which shows instabilities with periodic and

chaotic dynamics that are in good agreement with
the theory of Ikeda, Daido, and Akimoto.

There are several aspects of this problem that
make it interesting. Intrinsic optically bistable
devices can be extremely fast optical switches4;
periodic dynamics could conv'ert them into short-
pulse generators. Optical bistability has also re-
ceived substantial attention as a model problem in
nonequilibrium statistical mechanics, and the ap-
pearance of chaos in this context is interesting.
By comparison with turbulent flows, ' the problem
of optical turbulence (i.e. , chaos) is both experi-
mentally and theoretically very simple. Although
instabilities of the type described here are not
widely known in physics, they are common in ec-
ological modeling since population dynamics is
realistically described by difference equations.
We therefore begin by explaining how stability
analysis works and how it relates to the differen-
tial-equation analysis used in most theories of
optical bistability.

Let us suppose we have a difference equation

x„+,=f(x„)where x„is a vector, f is a nonlinear
vector function, and n labels the steps. The
steady states, defined by x„+,=x„,are denoted
x ~. The stability analysis proceeds by defining

vy = —y+ sgn(n, )~E(t —t„)P,
Z(t) =A+BF.(t t~) exp[i (y- q, )].-

(&)

(2)

x„=x'+ &„where ~„is small. One then lineari-
zes the problem by a Taylor's expansion about
the steady state and finds the eigenvalues A~ of
the resulting matrix. The 4th state is stable if
and only if ~A"~&1 for all eigenvalues. Let us
next associate a differential equation with the dif-
ference equation. We expand x„,as x„,=x„
+ tl,x„,where t~ is the time-step between x„andx„„.Then we drop the meaningless subscript n
to obtain t„x=1(x)-x, a differential equation
whose steady states are the same as those of the
difference equation. The eigenvalues A.

" that are
obtained from the stability analysis of this differ-
ential equation are related to those of the differ-
ence equation by A.

" =(A" —i)/i» and the state x~

is stable if and only if Rek'&0. One can see that
if the differential equation is unstable the differ-
ence equation is also unstable, but the difference
equation can be unstable even though the differen
tial equation is stable. It is in this latter regime
that one finds periodic and chaotic time dynamics.
We will call this the regime of "Ikeda instability, "
to differentiate it from other types of instabili-
ties' ' that occur in optical bistability. The in-
stability described by McCall' is a relaxation os-
cillation having a period related to the response
times of the medium rather than t~. The self-
pulsing instability of absorptive optical bistabil-
ity can be distinguished experimentally since it
has a period of t„,while periodic pulses of the
Ikeda type have period'nt~ where n~2.

Since the ring cavity, the problem Ikeda first
analyzed, is a standard model problem in optical
bistability and is the motivation for introducing a
delay in our hybrid, we discuss the ring first. In
the limit of purely dispersive bistability, by using
a cubic nonlinearity inside a ring cavity, the dy-
namics are given by the difference-differential
equations""
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Here E(t) is the normalized field in the cavity, y
is the phase lag of the field across the nonlinear
medium, n, is the nonlinear coefficient, q, is the
small-signal phase lag, v is the response time of
the medium, t„is the delay time, A=T' 'E„and
8 =1-T where T is the mirror transmission and

E, is the incident field. In the limit t~ »~, these
equations reduce to a continuous-time difference
equation' which has an Ikeda instability over vir-
tually all of what would normally be referred to
as upper stable branches. " In the limit t~«v,
the difference equation features are largely elim-
inated, and normal bistable behavior is predic-
ted. '

In our experiment, we follow the suggestion in
Ref. 2 and modify a hybrid" optically bistable de-
vice, by introducing an electrical delay line with
delay t„in the feedback [see Fig. 1(a)]. In our
hybrid' an optical beam passes through a PLZT
(Pb-based lanthanum-doped zirconate titanate)
piezoelectric crystal sandwiched between crossed
polarizers. The transmitted light is monitored
by a photodiode detector whose output signal is
delayed and then fed back to the electrodes of the
PLZT, causing changes in the refractive index
and the transmission through the device. This
delay-line hybrid device satisfies'

(a)

(b)

(c)
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v.q = —y+A'(1+ 2B cos[q (t —tR) —y,j),
where the light transmission of the PLZT as a
function of voltage V is approximately (1-2B
&&cosy)/2, y=wV/Vs, VH is the half-wave voltage,
A is proportional to the input intensity, y, = —mVs/

V~, U~ is the bias voltage, and 7. is the composite
detector-f eedback-P LZ T response time. In our
experiment, B has a value close to the 0.5 for an
ideal modulator. Figure 3 of Ikeda, Daido, and
Akimoto' shows periodic oscillations and chaos
obtained by solving Eq. (3) numerically with 8
= 0.3. The output of our device is qualitatively
indistinguishable from their solutions (and our
own). Equation (1) for a ring cavity reduces to
Eq. (3) in the limit B«1. Since we see Ikeda in-
stability in a delay-line hybrid, it almost surely
exists for a ring cavity, and could have important
implications.

Since optical or electronic delay lines with t~
»1 ms are impractical, we introduce a delay by
inserting a microprocessor in the feedback loop.
The output from the photodectector is digitized
every 160 p, s. Next, since the electro-optic de-
vice gives a phase shift that goes as V' and we
need a response proportional to V for the device
to be described by Eq. (3), we take the square

FIG. l. (a) Block diagram of experimental apparatus.
(b) Plot of output intensity (vertical axis) vs input in-
tensity (horizontal axis) as the input intensity is cycled
slowly from zero to some maximum and back over a
time of 30 s. Here t~= 160 ps «T=& ms. (c) Same as
(b) except t~=40 ms &&7=j. ms. The labels, &, ~, and
~ indicate the stable, periodic, and chaotic domains of
the upper branch.

root of the input voltage and store it in a first-in,
first-out buffer (queue). We can then adjust the
delay by leaving the sampling rate constant and

changing the length of the buffer. Whenever a
new sample is digitized and stored in the buffer,
the oldest sample is retrieved from the memory
and fed back to the PLZT through a digital-to-an-
alog converter. The response time v was typi-
cally set at 1 ms. The output characteristics
were unchanged by reasonable variations in 7 and
the digitizing error size, verifying that the use
of a microprocessor to introduce the delay does
not affect the dynamics.

In Fig. 1(b) we show the usual hysteresis curve
for the case t~ = 160 p. s «~ obtained by slowly cy-
cling the incident laser intensity from zero to a
maximum and back to zero. In Fig. 1(c) the only
change was to make t~=40ms»~. While the low-
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er branch of the curve is the same as in Fig. 1(b)
the upper branch is very different. One can dis-
tinguish three qualitatively different regimes in
the upper branch, which are labeled S, P, and C
in the figure. When the incident power is low,
the upper branch is stable (8) and is identical to
the upper branch in Fig. 1(b). For higher powers,
the upper branch is unstable, and appears as a
"wash" rather than as a well-defined line. This
comes from the variation of the output intensity
with time. Within this unstable regime, two
characteristic patterns can be seen. When the
wash is continuous (C), as is the case in the right
portion of the branch, one has a chaotic output
that appears to wander randomly in time between
an upper and lower bound as in Fig. 2(c). In the
central portion of the upper branch (P) the wash
has a dark area in the center, because the output
is periodic with period 2t~ and close to a square
wave [Fig. 2(b)]. The curves in Fig. 2 are in
close agreement with Fig. 3 of Ref. 3 which gives
a theoretical result for the hybrid with use of Eq.
(3)

We observe only periods of 2t~ and 4t» and ne-
ver encounter periods of t» which rules out self-
pulsing. ' By varying t„and v, we eliminate any
relationship between 7 and the observed period of
2t„,which rules out pulses of the Mccall' varie-
ty. The periodic part of the upper branch is per-
iodic throughout its domain, but the chaotic por-
tion is observed to have very small domains with-
in it which are periodic. In these domains one
observes traces with fundamental periods of ei-
ther 2t~ or 4t~ with roughly equal probability. At
some settings we are able to see a stable domain
at the high-intensity end of the upper branch. In
the unstable regime that borders this stable do-

main, the intensity again varies periodically with
period 2t~, but the modulation depth is much
smaller than in the periodic domain shown in Fig.
1. These results are in excellent qualitative
agreement with the computations in Refs. 2 and 3
and agree also with our own calculations.

In summary, we report the first experimental
observation of Ikeda optical instabilities, result-
ing in periodic and chaotic outputs. Ikeda insta-
bility may be of value in constructing new optical
devices. If this instability is not desired, it may
be avoided by using round-trip times shorter than
the response time of the nonlinear medium. This
was most likely the case for previous experi-
ments on short semiconductor etalons. Intrinsic
devices have been studied experimentally" in the
regime v « t» but no instability was reported.
Two points are worth noting, however. First,
the detector response was several t~ in Ref. 13,
so that the instability could not have been seen
because of time averaging. Secondly, a Fabry-
Perot cavity was used rather than a ring, and it
is an open question as to how this instability af-
fects that case. Finally, we note that several re-
cent theoretical studies, such as the proposed
phase-switching of dispersive systems, '4 have
postulated conditions under which the Ikeda insta-
bility exists. These proposals will have to be re-
analyzed.
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FIG. 2. (a) Time calibration; one pulse every delay
time tI, =40 ms. (b) Intensity vs time in the periodic
domain. (c) Intensity vs time in the chaotic domain.
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Nonlinear Stationary Interchange Modes in a Plasma
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Nonlinear two-dimensional interchange modes, excited in a nonuniform magnetized
plasma, are found as analytical stationary solutions of the ion vortex equation. The ef-
fects of deviation from charge neutrality and nonuniform gravity have been included in

these solutions. For an exponential type of density and enstrophy functions it is possible
to reduce the equation governing the electric potential to the Liouville equation (~C
= ex+4).

PACS numbers: 52.35.Mw

I ow-frequency vortex modes play a.fundamen-
tal role both for the confinement of laboratory
plasmas and in the understanding of astrophysical
and ionospheric processes. ' ' In many of these
applications, because of the very low frequency
of such modes, a nonlinear description of the mo-
tion becomes necessary for the study of the long-
time behavior of the system. The dynamics of
these processes can often be analyzed in terms
of two space coordinates in the plane perpendic-
ular to the magnetic field. This formulation,
nevertheless, allows for the possibility of ther-
malization of electrons along the magnetic field
lines. ' Moreover, for long-wavelength perturba-
tions the quasineutrality condition is usually used.

This assumption is, as we will show, justified on-

ly when. the ion plasma frequency is much larger
than the ion cyclotron frequency.

Recently some interesting nonlinear properties
(such as cascade processes) of drift and inter-
change modes mere found by expanding the well-
known ion vortex equation in the limit where the
vorticity is much smaller than the ion cyclotron
frequency. ' For the analysis of interchange
modes the additional assumption of weak nonlin-
earity was used in the investigation of spectral
cascade processes, while a reductive perturba-
tion method, assuming a small mave amplitude,
was applied for the description of the nonlinear
convective cell formation. '
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