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The pionic two-body decay amplitude of the proton in the SU(5) grand unified gauge
theory is computed by using the soft-pion method in the reference frame of the pion at
rest. The normalization condition of the relativistic three-body Bethe-Salpeter wave
function of the proton is used in the computation. It is shown that the partial decay rate
of the process, proton e+~, is (0.86&10 yr) ' and (1.4&&103' yr) ' for re~=4. 0&&10"
GeV and 8.0X10' GeV, respectively. These values are on the boundary of the present
experimental limit.

PACS numbers: 13.30.Ce, 11.40.Ha, 12.20.Hx, 14.20.Ei

One of the most remarkable consequences of
grand unified gauge theories is that the proton de-
cays. Several authors have made estimates of
the proton decay rate in the SU(5) and SO(10) mod-
els" and have found the lifetime to be in the
range of 10"-10"yr, '~ which is close to the
present experimental lower bound' (- 10"yr).
Renewed attempts to observe such decays are un-
der way and are expected to give some results
soon if the proton lifetime is in the above-men-
tioned range.

Among various decay modes, the mode p-e'
+p' seems to be the most appropriate one for de-
tection in most experiments in progress if its
branching ratio is significantly large. However,
there is some uncertainty in the theoretical esti-
mates for this process since the estimates are
made based on either the SU(6) wave functions or
the Massachusetts Institute of Technology bag
model wave functions, which are either nonrela-
tivistic or noncovariant. The proton, consisting
of three light quarks, is likely to be a relativistic
system and the relativistic corrections may not
be negligible. In this article, I present a rela-

tivistie calculation of the pionie two-body decay
of protons based on the partially conserved axial-
vector current hypothesis (PCAC) and current
algebra.

In order to use the soft-pion method, I shall
calculate the decay amplitude in the rest frame
of the pion. If the soft-pion limit is taken literal-
ly, the momentum of the incident proton becomes
infinite:

~2 + 2 + 2
(p'+M')'i'=

2
"-~, as p, „-0, (1)

where M, ~, and p„are the masses of the pro-
ton, the positron, and the pion, respectively.
However, it is important to note that we can use
the soft-pion method either in the ordinary refer-
ence frame of the pion at rest or in the infinite-
momentum reference frame of the incident pro-
ton. ' The two situations are identical in the limit
p, ,-0. In fact, this method has been used in the
analysis of nonleptonic hyperon weak decays and
has led to successful sum rules for the p-wave
amplitudes as well as for the s-wave amplitudes. '

The interaction Lagrangian in the SU(5) gauge
model, which is relevant to the proton decay, is
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given by

2 = (4G+~2e, ,~[u~L'y&u, L(2eL y&d,.L+ eR y„d;R+pL y&s, L+pR y&s;R)

kL Y pdlL (veR y pd iR + v& R y&s iR)] & (2)

where (u„,d„, s, )L~» and (e, v„p, , v„)L&R~ are the left- (right-) handed quarks of color index k and the
leptons, respectively. The coupling constant t" is given in terms of the grand unified coupling constant
gG„T and the heavy gauge field mass mx, by

G = (g GUT /4W2ygx )

while X is the quantum-chromodynamic enhancement factor'3 (& = 3.7).
Using the PCAC relation for pions,

(3)

= (F31'~) SA~ /Sxp, cv =1,2, 3, (4)

where W2F, is the decay constant of z'- p'v„(W2F, =0.945'.,) and where A& is the axial-vector cur-
rent, and applying the standard technique of the I ehmann-Symanzik-Zimmermann reduction formalism
j.n the rest frame of the pion, I obtain the following expression for the decay amplitude for p- e'z'.

(5)

(2q.)"'&e (p), ~'@)
I
&

I p (p)&

. I .'-q, '
I . '&elA. '(0)I»«l&l p& &el&I»&IIA. '(0)IP&

The limit q, -O selects the intermediate state E in the summation of Eq. (5) to be equal to either the
initial or the final particle state. Thus, I obtain

f = (2q, )"'(e~'lml p) =F '(&el[Q, ', &]Ip&+

Q3 = 2 f (u ~ y3u~ —d~ y d 3)d~x,

giving, '

[Q,',2] = (4Gy/~2e;„. ,2[u„L'y—„u~L(2eL y& d;L eR y„-d;R) +u, L'y& d,Lv,R'y& d;R].

Then Eq. (6) becomes

Z &e I
&

I P&&P IA.'(0)
I P& k.

intermediate
spin sUm

Here I have used the identity (elA, '(0)le) =0. The first term of Eq. (6) is computed by using

(6)

(8)

f =
~2

E' ~

&~ ~ u, ' (P)(0lu~, d;, u,.
~l p& e y&

1 X5

ab

1 I+3y, 3+y, M
2E g~u(p)y. y u(P), (9)

where S„u"(p) and E„u(p) are the energy and the Dirac spinor for the positron and the proton, re-
spectively, and g„ is the axial-vector coupling constant of the neutron p decay.

In order to find the expression for the three-quark wave function of the proton, (Olu„(0)d, ,(0)u,,(0)lp&,
we define the three-body Bethe-Salpeter amplitude for the octet baryons, 'B,

& oI T 0;. (x,)0,,'(x.)N..'(x.)l» = (tvf«, ) "'e"'l (x. .' "U.s,"'+x..'"' U. B,'"')w 4,n,p)e™,
where

X = —,'(x, +x, +x,), P Pl P2 P3P 5 xl x2i

P g
—2 (P, -P2), q = —.(x, + x, —2x,), p „=3 (p, +p2 —2p, ),

0

ab
(12)
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(13)

The Greek index in Eq. (10) represents the ordinary SU(3) index of the strong interactions (not the col-
or index) and B stands for the 3&& 3 matrix of the baryon octet .

The normalization of the above amplitude can be written as

d p L'd pq'd pgd pq
X, (p ~'P, '), [I(P &',P „',P &,P „;P)+G(P,',P „',P „P„;P))x,(p &,P, ) =P., (14)

where y~(p&, p„) is the Fourier transform of

Q is the kernel for the six-point Green 8 function and

I(P ',P,' Pg P„p)=(2 )'6(PE —P ')6(p -P,')[S "(-'P+Pg+-'P, )S'4 -Pg+ 'P, )S'(-'-P -P, )] '

with

[s,"(u)]-'= i(iya+~„).

(16)

(17)

Equation (14) is a generalization of the normalization condition for the two-body Bethe-Salpeter ampli-
tude. " The explicit computation of Eq. (10) gives

" d'pgd'pqi i, 1(ppq)' 2 (PPL)' 2(i ).

where qr(p~, p„;p) is the Fourier transform of p(g, q;p). Then, for the wave function for the relativis-
tic harmonic-oscillator potential, '

2 2

q (&, n;p) =n"~I--; 2 ('—') ...2
'—

) .j* I,
where

j = g/W2, j= (2/3)"'q,

the normalization condition gives

X= (a/3~)'[a —2(M —3m, )'] "'.
Assuming that M = 3m„ I obtain

q (o, o;p) -=&= (3~) '"(o./»)"'.
Using Eqs. (10), (12), (13), and (19), I can compute the matrix element of Eq. (9), giving

Mf = 6N —u" (p)1',u(p)+u('(p)1", u(p) g„u(p)y, y, u(p)
K P

where
a, +b;y» iy p+M-, 1+y, | a;+b;y, —iyp+M 1+y~ r

p 2
C Y 2M

C yp 2 Yp 2 2~ y 2 Y

a;+b;y, —iyP+M 1+y,
)r5r„

a;+b, i' +M= —b;+a~y~+ ' (1 —y5) —b;+a&y5, i = 1,2.

(19)

(2o)

(22)

(23)

(24)

Using the values
1 3

I obtain

a =3, b=l, (26)

3 1+ 2y„ I', = —1+3y, . (26)

The bilinear Dirac spinors in the rest frame of the pion which appear in Eq. (23) can be computed by
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using the formulas

(p), , (y)=- (' ~ (, "(u) (p)=!(M ) "'[(M+ )'- ']"'&' '(
(27)

"(f)y. (p) =-'(M ) "'I(M - )'-I .']"'('" Ph,

where $ and $
' are the two-component spinor of proton and positron, respectively, and p is the unit

vector in the direction of p. Alternatively, one can use Table III of Ref. 7 for the infinite-momentum
reference frame of the incident proton. Both methods give the same result upon neglecting the pion
mass. I get the final form for the decay amplitude

f —i 1 12G~X
(2q )'~' F (2q )'~' ~2 g /

where

&=-l{1+[(M-I)/N+~)]g )=—-l(1+ g ) =-3.»,
~ =-.'(I+ [(M +m)/(M -m)]g„)= —.'(i+ g„)= i.i3.

(Here, use is made of the empirical value, g„=1.260+ 0.007.)
The decay rate of p-e'z', then, can be computed from Eq. (28), giving

12G N M 8 N 5I (
+ 0) (lg~ lfll ) gGUv (1+ )

(28)

(29)

(30)

For typical values of the parameters~""

goUT /47I'=0. 024& X = 3,7& a =0,4 GeV

I obtain the partial decay time

(
0.86x 10"yr for ~~=4.0x 10' GeV

T (p —e '71') = [r (p —e 'm') ]
1.4x 10"yr for ~x ——8.0x 10'4 GeV.

(31)

(32)

These values are on the boundary of the experi-
mental limit, ' and are reasonably close to those
obtained by Gavela et al." ][1'(p —e'm')] '= 0.53
x 10"y for ~» =4x 10"GeVj. The results ob-
tained by other groups may be compared with Eq.
(32) by assuming a typical branching ratio~ " '4

I'(p —e+g')/I'(p —two bodies) = —,'; Goldman and
Ross (Ref. 3), Din, Girardi, and Sorba, (Ref. 13),
Buras etal. (Ref. 1), and Donoghue (Ref. 4) give,
respectively 10 "[I'(p-e'z')] '=1.8, 2.7, 3.7,
and 30 yr for ~~=4&& 10' GeV. For a compre-
hensive review and many references on this sub-
ject, see Ref. 14. Note also that if we take the
value of the parameter o of the proton wave func-
tion to&be 0.5 GeV, which is an alternative choice
suggested in Ref. 9, we would have obtained
[I (p-e+* )] '=0.44x 103 yr for mz ——4.0x 10'
GeV. This is very close indeed to the value ob-
tained by Gavela et al."

From Eqs. (28) and (29), we can deduce that
the decay amplitude of p —e'z' is predominantly
s wave and the asymmetry parameter is given by

~ = 2 Reh*&)/(I&l'+ I&l') = —0.60. (33)
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Data from four reactor experiments is analyzed without using any calculated 7'~ spec-
trum. N~ ~ and N, &, for e+ observed with 2.2 &E~ l & 6.7 MeV and 4.4&E,, 2& 6.7 MeV, are
extracted and Net/Ne 2 is found to be 2.7+ 0.5, 5.6+ 0.6, and 8.20+ 0.85 for the 6.5-, 8.7-,
and 11.2-m experiments, respectively. In pairs, these numbers differ by 3-8 standard
deviations. No distance-independent 7'~ spectrum accounts for all the data with a confi-
dence level (C.L.) 0.0028. Oscillations with three (two) &*s yield fits to all data with
C.L.=0.061 (0.033) and to the high-statistics experiments with C.L.&0.31 (0.18).

PACS numbers: 14.60.Gh, 13.15.+g

Since the phenomena of neutrino oscillations
was first discussed' there have been several ex-
perimental suggestions in support of that possi-
bility." The recent round of discussions on this
subject was intensified by the experimental find-
ings of Reines, Sobel, and Pasierb (RSP), who
measured the rates for neutral current deuteron
(ncd) and charge current deuteron (ccd) reactions
initiated by reactor v, .' Over the years, the en-

dR =0.203&& (9.24&&10 ' cm') '
dE,

ergy spectrum of reactor v, has been experimen-
tally measured by the inverse beta (II3) reaction
v, +p -n + e' at 6.5,' 8.7,' and 11.2 m (Ref. 6)

from reactor sources. We shall study the e' en-

ergy spectra measured in those three experiments
in conjunction with the deuteron experiment of

RSP to examine the hypothesis of oscillations.
In the IB reaction the differential rate for e'

with observed kinetic energy E, at a distance L
from a reactor source is given by

2

x — „- g, O, R, E„E,' gE, 'n „LdE„MeVd

where n~ is the number of protons in the target, P is the reactor power, E,'=E„—1.8 MeV, o(E„)
=9.24&&10 (E„—1.29)[(E„—1.29)s —0.26]'t2 cma, B,(E„E,') is the experimental energy resolution func-
tion, q(E, ) is the energy-dependent detection efficiency, tl, is the energy-independent systematic effi-
ciency, and n(E„,L) is the spectrum (number of v, s per fission per megaelectronvolt) of v, with
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