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If p is a determinantal eigenfunction for the N-fermion Hamiltonian, H, with one- and
two-body terms, then eo ~ (p, lip) = E(K), where e2 is the ground-state energy, K is the
one-body reduced density matrix of tI), and E(E) is the well-known expression in terms of
direct and exchange energies. If an arbitrary one-body K is given, which does not come
from a determinantal f, then E ~ eo does not necessarily hold. This Letter proves, how-
ever, that if the two-body part of II is positive, then in fact eo «eHt; «E(E), where eHF is
the Hartree-rock ground-state energy.

PACS numbers: 05.30.Fk, 21.60.Jz, 31.15.+ q

The variational principle is useful for obtaining
accurate upper bounds to the ground-state energy
e, of an N-particle fermion Hamiltonian, II„. A
normalized wave function g» (or density matrix
p„) which satisfies the Pauli principle is re-
quired; then e, ~ e (p») =Trp»HN (with p„= ( g»&

&&(gN~ being a pure state in the wave-function
case). In practice, however, it is often possible
to make a good guess for p„', the reduced single-
particle density matrix, but the evaluation of
e (p„) is complicated by the reconstruction prob-
lem for p„: To evaluate e(p„) we first have to
know p„. In the simplest case p„' is an N-dimen-
sional projection and p„ is a pure state, with!!N
being a determinantal, or Hartree-Fock (HF)
function. Otherwise, p„ is a very complicated
(and, in general, a nonunique) function of p„',
and the calculation of e (p») can be extremely dif-
ficult because of the "orthogonality problem. "
For this reason most variational calculations do
not depart very far from a HF calculation.

It is the purpose of this note to show that under
a positivity condition on the tw o-body part of H~
(which, fortunately, holds for one case of major
interest:he Coulomb potential) it is possible to
obtain an upper bound to e, which involves only
p»', tke 2econst2uction p2'oblem is eliminated.
In the HF case, this bound agrees with e (p»).
Moreover, our bound, E, satisfies E» e«,

where eHF is the louest HF energy. While our
bound is thus not superior to the best HF bound,
it may be superior in practice because the exact
HF orbitals are unknown in general. A possible
application might occur in the theory of itinerant
ferromagnetism.

Let us make some definitions. Let z = (x, cr) de-
note a single-particle space-spin variable and
Idz =Q, f —dx Asin. @le-particle operator K(z;z')
is called admissible if it is positive semidefinite
and

TrK =N, K ~ I, i.e.,

Given p„satisfying the Pauli prinicple,

PN ( ! ) +JPN( & 2s'''s Nl v 2&'''s N)

&& dz~ d~g.

Any such p~' is admissible. Conversely, given
an admissible K there is always at least one p„
with p„' =K. In the HF case p„= ~ gN&(p»~ and

P„=(N!) '"det[f, (z,.)],

p.'(z;z') = Zf, (z)f, *(")c,,

with f„.. ~, f» being any K orthonormal functions.
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Consider now Hamiltonians of the form
X

H+ Q bj + Q v)jp
j. ~i&q —N

(4)

=K(z;z')K(w; w') —K(z; u ')K(w;z'), (5)

with K=p~'. In this HF case e(p~) =F. (K), where

and

E(K) -=Tr(Kh) +2 Tr(K,v)

Tr(K,v) = ffv (z, w)K, (z, w;z, u)dzdw

(6)

in the diagonal case. This formula is well known.
For any admissible K, (5) and (6) define E(K).

The problem addressed here is the following:
Given an arbitrary, admissible K, does a pN

exist such that p„' =K and e (p„) & E(K)~ If v & 0,
the answer is yes 1 Note, however, that TrpN'
=N(N —1) but that TrK2 =(TrK)' —TrK', and this
is N(N —1) if and only if K is an N-dimensional
projection as in (3). Otherwise, TrK, &N(N —1).
Therefore the pN which I wish to construct cannot
simply satisfy p„' =K,. The solution must be
more complicated than that.

Our main result is stated as follows:
Theorem. Let v be po—sitive semidefinite [i.e.,

in the diagonal case, v (z, w) & 0 for all z, w], and
let K be any admissible single-particle operator.
Then (i) there exists a density matrix pN satisfy-
ing the Pauli principle such that pN' =K and

e, &e(p„) &E(K);

(ii) there exists a normalized determinantal func-
tion g~ such that

(4N HN kN) e (pN) E (K)

Note that in (ii) it is not claimed that if p„
—= ~g„)(P~~ then p„'=K. However, (9) does say
that, among all admissible K, an HF-type K [N-

where h and v are self-adjoint operators. v is
the two-body part and h is the one-body part
[usually —(b'/2m)b, +U(z)1. Our method has ob-
vious extensions to higher than two-body interac-
tions, but for brevity only (4) will be considered.
Normally v is dia. gonal [a loca, l potential, such
that v„=v(z, ,z,.)], but this is not necessary. If
p„ is of the HF type, then p„', defined analogous-
ly to (2), satisfies p„'=K„where

K, (z,w;z', w')

dimensional projection (3)] gives the lowest val-
ue of E(K). The proof requires the following:

Lemma. —Let c, - c,» ~ ~ ~ be an infinite sequence
with 0- c, - 1 and Q,"c,=N, where N is an inte-
ger. Then there exist N orthonormal vectors
V', . . . , V" in L' such that Q, , ~ V,

' ~' = c, .
Proof: Induction on N is used. For N =1,

choose V;' =c,. ' '. Assume that the lemma holds
for N =n —1; the lemma will first be proved for
n under the assumption that c, =0 for j» 2n. De-
fine d, =l —c,. (1 &j &2n), andd&=0 (j& 2n). The

d,. satisfy the hypothesis for n —1, so that there
exist orthonormal W', . . . , W" with 8&
Let v', . . . ,v" be n orthonormal, (2n —1)-dimen-
sional vectors which are orthogonal to W', . .. ,
W" ' [thought of as (2n —1)-dimensional vectors].
Then the n vectors V ' = v, ' (1 &j& 2n) [V,. ' =0 (j
& 2n)] satisfy the lemma. Next, suppose c, =0
for j» J. I use induction on J starting with J=2n.
Note that c&, +c, - 1 when l» 2n. For J+1, ap-
ply the lemma (with n and J ) to the sequence b,
= c,. (1 &j&J—1), b~, = c~, + c~, and b, =0.
(j& J). This sequence may not be decreasing,
but that is irrelevant. Let 5",. . . , 5'"be the
orthonormal vectors. The required vectors, V',
for J+1, are given by V,

' =W, (1-j&J- 1),
J- 1 7- 1 ( J' 1/ J'- 1) ) VJ' j- 1 (CJ'/

bz, )'~', V,.
' =0 (j&J). Finally, if c, &0 for all

j, choose I so that bz =—+,. zc,. & 1. Then apply
the lemma to the finite sequence of length L: b~
=c (1&j&L), b~. If W', . . . , W" are the ortho-
normal vectors, let V,.

' =W,. ' (1 &j&L), V,.
'

=Wz' (c,. /bz)'~~ for j & I.. Q.E.D.
Proof of Theorem: Write K(z;z') =Q, ,c,f,(z)

& f„(z')*, where the f„are the orthonormal eigen-
functions of K ("natural orbitals") and the eigen-
values of K, c,, satisfy the hypothesis of the
lemma. Let V', . . . , V" be the vectors used in
the lemma and let 6=(6„6„.. .j be any infinite
sequence of reals. The 1V functions E~ (z)
=P,",e' & V,"f„(z) are orthonormal for any 9.
Let p~ =

I g„)((~ I, where (~ (z, . . . . , z„)
=(N!)-'~'det[E~ (z„)]. Let ( ~ ~ ~ )e denote the
average (over [0, 2m) HZ, j with respect to all the

9, . (Formally, this requires infinitely many
integrations f, dV, /2&, but one can easily make
sense of this by taking suitable limits. ) It is
easy to check, with use of the property of the V',

that p„=(p~ )g satisfies p„'=(p„')e =K. Now

p„' &K„as stated before, but p„' = (p„')e =K,
—I.» with

I

2I.,(z, w;z', u') = Q W.,[f,(z)f, (w) f, (z)f.(u)][f,*(z')f„*(u—') f,*(z')f.*(w')]-
a eh = I
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and R'„= ~p, -, V. ' V, '*~' ~0. Thus, e(p~) =E(K)
—D, with 2D= Tr(I.,v). But clearly l., is positive
semidefinite, so that D ~ 0. This proves (i). To
prove (ii), note that E(K) ~ e(p„) = (G ) s, where
G = (Pu, H„gz ) is real for each &. Hence, for
some 9, G ~e(p„). Q.E.D.

A very useful discussion with professor J. K.
Percus is gratefully acknowledged. This work
was partially supported by the National Science
Foundation under Grant No. PHY-78-25390-A01.

Note added. —After reading this manuscript,
Professor M. B. Ruskai kindly pointed out that
the lemma is essentially a consequence of Horn's
theorem'. Let y ~ y ~ ~ ~ ~ -y and x &x

1 2 N 1 2

-x~ be two sets of reals. Then there exists an

M&&M hermitean matrix B with eigenvalues (x, j
and diagonal elements B;, =y; if and only if

Q,', (x, -y;) ~ 0 for all 1 ~ t ~ M, and with equality
for t=M. The existence of 8 is equivalent to y,.
=P„-, ~ U;, ~'x; for some unitary U. To apply this
to the lemma, suppose that c, = 0 for j &M~ X and
take y, =c, (for j ~M) and x, =x, = ~ ~ =xi=1, and

x, =0 for j&N. The required orthonormal vectors
V' are then V, '= U,-, for j -M and V,.'=0 for j&M.
Finally, if c, &0 for all j, then an argument such
as that given at the end of the proof of the lemma,
or something similar, must be used.

A. Horn, Am. J. Math. 76, 620 (1954).
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It is shown that evidence on cosmic-ray showers of energy 3& 10" to 10 eV indicates
that scaling in the fragmentation region is valid up to the highest energies if (and only if)
hadron-air inelastic cross sections continue to rise in the manner observed at lower ener-
gies. It is also shown, with use of additional air-shower evidence, that (ln A), the log-
arithmic mean primary mass number, changes from (4+2) at 1.6&10 eV to (0+() 6) at
and above 3x10 eV.

PACS numbers: 13.85.Kf, 13.85.Mh, 94.40.Lx, 94.40.Pa

Information about some features of nuclear
interactions beyond 10" eV can be obtained by
the study of high-energy cosmic rays. Beyond
10" eV these studies depend on observations of
extensive air showers. Such observations, while
not suited for the study of details, are capable of
giving information about broad features. In par-
ticular, they can be used to test the validity of
scaling in the fragmentation region. In this Let-
ter we examine data on the depth of maximum
development (X ) of large air showers as a func-
tion of energy (E). The variation of X is re-
lated to the multiplicity law for the production of
high-energy secondaries by the elongation-rate
(ER) theorem. ' By using this relation we show
that one of the important predictions of scaling,
namely that the multiplicity of high-energy sec-
ondaries is asymptotically energy independent, '
is supported by air-shower evidence up to the
highest observed energies, provided that hadron-
air interaction cross sections continue to rise in
the manner observed at lower energies.

In our analysis we have intentionally disre-
garded measurements of X by Thornton and

Clay, ' as their data have been challenged by Or-
ford and Turver' on a number of grounds. We
find, however, that the remaining evidence sup-
ports their conclusion as to a change in primary
composition from heavy to light nuclei between
-10" and 3 &10'6 eV. This conclusion is espe-
cially interesting astrophysically because it is
well established that the cosmic-ray spectrum
between 2x10" and 10" eV is significantly steep-
er than at lower energies, ' and there is evidence
from a variety of experiments that the amplitude
of cosmic-ray anisotropy increases rapidly with
energy in the same region. '

We discuss the data on X in terms of D„ the
so-called "elongation rate, " equal by definition
to dX„/dlnE. X is averaged over fluctuations
in showe r de ve lopment, and in cas e of mixe d

primary composition over the equal-energy mass
spectrum. For numerical results we use "ER
per decade, " defined similarly in terms of log, @
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