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Two-Photon Generation of Excitonic Molecules and Optical Bistability
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The fusion of two excited polaritons into an excitonic molecule gives rise to an inten-
sity dependence of the dielectric function. The use of this nonlinearity to obtain optical
bistability with platelets of direct —band-gap semiconductors is suggested.

PACS numbers: 71.36.+c, 42.50.+q, 78.50.0e

Optical bistability can be observed' in systems
in which strong intensity-dependent changes of
the real or imaginary part of the dielectric func-
tion occur. The considerable interest in this non-
linear optical phenomenon is due to its possible
device application in integrated optics. Optical
bistability can be described as a first-order non-
equilibrium phase transition and the resulting

!

photon distribution is expected to show anticorre-

lation effects. To generate optical bistability it
was suggested recently' that one use the nonlin-
earity due to two-photon resonance lines. In high-
ly excited semiconductors, a very efficient two-
photon absorption process exists in which exciton-
ic molecules are created via a nearly resonant
excitonic level. '

It has been shown previously" that in the vicin-
ity of the biexciton resonance the complex dielec-
tric function is given by

s(~) —g +(s s )~ 2 (~ & ~2) & x( m m)4n )M)'u) (e —~ —iy
(tu —i y )(&u —2~ —iy ).

(1 —R)'
(e~" —Re &")' +4Rsin'fI' ' (2)

where J, and J, are the intensities of the normal-

where c, and e„are the static- and high-frequen-
cy dielectric constants; ~„and & are the fre-
quencies of the exciton and biexciton, respective-
ly; M is the matrix element for the biexciton gen-
eration; n~ is the polariton concentration; and

y is the effective width of the molecule state.
The normal modes which result from (1) show an
intensity-dependent dispersion around co /2. This
dispersion has been observed by two-photon reso-
nance Raman scattering in CuCl (Itoh and Suzuki')
and CdS (Kurtze et al. '). Equation (1) describes
the observed intensity-dependent renormaliza-
tions quantitatively. ' The corresponding reflec-
tion coefficient for normal incidence R= [(n' —1)'
+n" ]/2[(n' 1+)'+n'"] is plotted for two polariton
concentrations in Fig. 1.

This intensity-dependent resonance in direct-
band-gap semiconductors is well suited to gener-
ate optical bistability and may indeed be the
mechanism for the recently observed optical bi-
stability' in GaAs at a frequency just below the
exciton peak.

The intensity which is transmitted through a
Fabry-Perot resonator filled with an active me-
dium is given by
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FIG. j.. Spectrum of the reflection coefficient &(,
n&) -R(~, 0) of CuCl for two polariton concentrations.
The inset shows the total exciton resonance and indi-
cates by a circle at which frequencies the two-photon
biexciton resonance occurs.

! ly incident and transmitted beams, respectively.
5= 6'+i 5"=Dncu/c is the phase shift for a single
path through the resonator of width D. The fre-
quency dependence of the complex phase shift is
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Spin-Dependent Absorption of Electrons in a Ferromagnetic Metal
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It is found that the current collected by a ferromagnet placed in an electron beam de-
pends on the orientation of the incident electron spin. At certain energies, only electrons
with spins parallel or antiparallel to the net surface spin density cause a net target cur-
rent. The spin dependence is caused by the influence of the exchange interaction on the
elastic scattering. Inelastic scattering measurements show that the spin dependence of
the production of secondary electrons is small.

PACS numbers: 79.20.Hx, 75.10.-b

When low-energy electrons strike a metal, a
variety of elastic and inelastic scattering phenom-
ena occur. In the case of a ferromagnet, the in-
teraction between the primary electron and the
ordered net spin density of the sample electrons
gives rise to a spin-dependent exchange interac-
tion." By using a primary beam of spin-polar-
ized electrons and a ferromagnetic target, it is
now possible to measure directly the effects of
the exchange interaction in the elastic and inelas-
tic channels. Vfe present measurements to show
that the effect of the exchange interaction is gen-
erally of the order of 10 ' of the spin-averaged
interaction, for primary-electron energies Ep
of 2-500 eV. However, the exchange interaction
can have a dominant effect on the net current ab-
sorbed by the sample at certain primary ener-
gies; either i, ~~ or i,~~ ca,n be finite while the
other is zero, where j, is the net absorbed elec-
tron current (number of electrons per second)
and && (&&) means the polarization of the incident
beam is parallel (antiparallel) to the majority-
spin direction in the sample. To elucidate the
mechanism behind this striking phenomenon, we
present the first measurements of the spin-de-
pendent asymmetry in inelastic scattering and
secondary production. These suggest that the
primary cause of the spin-dependent absorption

is the spin-dependent interaction in elastic scat-
tering. Through these results we demonstrate
that polarized electron scattering presents a sim-
ple way to study various elastic and inelastic
processes in a ferromagnetic electron gas and to
obtain information on surface magnetic proper-
ties. Furthermore, the spin dependence of the
absorbed current provides a new principle for
detecting the spin polarization of an electron beam
much superior to the complicated and inefficient
methods in use or proposed. '

Spin-dependent electron scattering from a ferro-
magnetic surface was first measured by Celotta
et al. ' on Ni(110) with use of the spin-polarized
electron beam emerging from a GaAs photocath-
ode. In the present experiment, the spin-polar-
ized electron beam is incident normal to the sur-
face of the ferromagnetic glass, ¹i4pFe4,B». The
electrons scattered from'the sample are meas-
ured with a movable Faraday cup with an energy
analyzing element to obtain the elastically scat-
tered current i, (E,) or the inelastically scattered
current t, (E). The current absorbed by the sam-
ple, i„can be measured by a meter connected
to the sample. An advantage of using a metallic
glass is that it can be easily magnetized'; this
leads to minimal stray magnetic fields outside
the surface. The sample is a 16x2&0.03 mm'
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