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given.
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In this paper we give a new finite-action solu-
tion of the self-duality equations (SDE) with Pon-
tryagin number &. This runs counter to the com-
mon wisdom based on the pioneering work of Bel-
avin, Polyakov, Schwa, rtz, and Tyupkin (BPST)
and supported by the outstanding work of Atiyah,
Ward, Drinfeld, Hitchin, and Manin. ' Neverthe-
less, Crewter' pointed out that solutions of the
SDE with fractional topological charge might ex-
ist.

Here we argue that our solution does not actual-
ly contradict any of the existing theorems. BPST
pointed out that the requirement of finite action
implies that asymptotically in R4 the gauge field
A

&
should tend to a pure gauge a„gg ', and with

the assumption that g represents a continuous
map of S' to SU(2) they concluded, using homotopy
theory, that the topological charge must be an
integer. However, finite action does not imply
that this mapping must be continuous, and with-
out continuity the concept of homotopy breaks
down. If, however, g is not a continuous S'-S'
mapping, this automatically rules out the possi-
bility of moving from R4 to S' in the sense of the
fiber-bundle approach, thus the theorems of
Atiyah et al. do not apply here. 4 Qn the other
hand, Uhlenbeck' has recently shown that from
finite-action solutions of the Yang-Mills equations
in R4 pointlike singularities are removable, and
so it is possible to extend this solution to S4. Qf
course, this theorem is not applicable when the
singularities of A

&
are not pointlike.

In fact, our solution has a singularity on a two-

dimensional sphere (So') and it may be thought of
as an extended object, to be contrasted with the
pointlike structure of instantons. We may inter-
pret it as a closed stringlike fluctuation of the
vacuum, appearing at a certain instant (in Eu-
clidean time) with zero radius, evolving to a
maximal one, then shrinking back to zero radius
again, and finally disappearing. Alternatively,
since in Euclidean space there is no preferred
time variable, we may describe our solution as
a "balloon" (S,') with a given radius appearing at
a given instant and then disappearing again.

We now proceed to describe this solution in
some detail. It is perhaps somewhat surprising
that our solution is in the well-known Corrigan,
Fairlie, 't Hooft, Wilczek (CFtHW)' Ansatz

Ap=o'pp ~ lnp,

where the SDE F„„=*F„„(Ref.7) reduces to

p
' p=O. (2)

In this gauge we need two coordinate patches to
describe A&.' In addition, even these two patches
cover only R'~ 8,', and we have to define A„in
the whole A4 by an appropriate continuation, as
will be explained later.

In the two patches the A&'"'s are given by dif-
ferent superpotentials p,. :

A "=0 „8'lnp,, i=1, 2.

Now for our solution both p,. 's depend only on z
and r and they have the form

(4)

which are given by

p, =(S'-S ')r 'S-', I,. =S'(S'+S '+H,. )-',

H, = [(S+S )' —4n']'I'14[4n' —(S —S )']'+ S'S ' —12n'(z —p)'],

H, = [4n' —(S —S )']' '(—' [4n' —(S+S )']'+ S'S ' —12n'(g —p)'],

1981 The American Physical Society



VOLUME 46, NUMBER 6 PHYSICAL REVIEW LETTERS 9 FEBRUARY 1981

where

S= [{r+a)'+(z p—)2]'~2 S = [(r-c )'+(z- p)']'~'

n &0, and p is an arbitrary real number.
The two coordinate patches I', and I', are cho-

sen in such a way that A&"' are free of any singu-
larities in patch P, ;the. ir projections on the (z,
r) half plane are depicted in Fig. 1. The points
A, B, C, and D on the z axis are excluded from
the corresponding patches as the h, functions
have poles there; the line segments (z = p, r &n)
and (z = p, r&ct) are excluded from P, and P„

! respectively, as B„h,and ~„h„respectively, are
discontinuous there N. ote that S,'(z = P, r = n)
belongs to neither of the two patches.

In both domains of the overlapping region, the
two A &"'s are connected by a continuous gauge
transformation

A &"=nA &"n '+ge nn '
P P P 7

where 0=exp[in. (z, r)(o'x/2r)] with

m R2
o.(z, r) =-sgn(z —P)+ 2a.rctan ' —2arctan

2 1 Tl 1 —T,

with R,. and T& given by

z-p
~ A(c )1

z+~ A'

s(c,)

=I'lo(

c(-c,)

n(-c, l

FIG. 1. The positions of the poles are given by

c( = 0. + 2/~5)~~2 c& = c&

A, = [sgn(z —p)/2S'] H„T,= (2S') 'H„
A, = [sgn(p —z)/2S']H„T,=(2S') 'H, .

We are forced to leave out S,' from the over-
lapping region since the transition function 0 is
not continuous there. However, from both patch-
es the A&"'s can be continued back, with use of
(3) and (4), to this sphere where A„'"=A„'".
Here we argue that the SDE are fulfilled even on

S,'. If we extend the p, 's to the whole R' their
derivatives become (singular) distributions; how-

ever, the main point here is to realize that on
So' they give no contribution (in the sense that the
appearing 5's are multiplied by coefficients van-
ishing on S,'). It is in this sense that our solution
satisfies the SDE on the whole R4. This situation
is not unfamiliar because, in the case of the well-

(10)

The correct prescription for evaluating (10) is

q =-{16m') 'lim fdzdQf, r'drQClinp,

since the action density +I'„„'E'""is regular at
r=0. In fact, (10) should be interpreted as the
sum of the integrals of QUlnp, - in P,.USO', sub-
tracting the contribution coming from the over-
lapping region.

Now, observing that CI lnh, - is identically
zero as a consequence of (&,2+ 8„')inh, =0 in the
domain of the integral, the topological charge is

q = —(16m') 'Jd8~ 8„Elln[(s' —S ')/rS'], (12)

with use of the Gauss theorem. Equation (12) is
readily evaluated and its value is found to be &,

contributions to (12) coming from S' at A-~ and

the hypercylinder surrounding the z axis.
We now want to discuss the topological behavior

of our solution. Since the gauge fixed by Eq. (1)
is not suitable for discussing the asymptotics of
the gauge fields at R-~—A &"'s are vanishing
faster than B„gg '—we make a gauge transforma-
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known instanton solutions, the SDE are satisfied
in this gauge in a similar (distribution) sense,
because of pointlike singularities in the connec-
tion {A&). Our case is different since A „"sare
free of singularities in P,.USO', but the transition
function is not regular on So'. It can be interpret-
ed as a singularity of the bundle itself.

We now proceed to calculate the topological
charge

q = (Bm') ' J d'z I' „'*E'~" (9)

which is given by

q= —(16m') ' Jd'x lnp.
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tion in the following way: First, in P, we carry
out a gauge transformation S, on A„'",which
makes A „""regular on the z axis. We now de-
form. P,. to P,' in such a way that P, ' does not
contain the z axis. We then transform A '" byP

Sy where the S,. ' s are given by

S, =exp[- i |);(z, r)(o x/2r)],
with

R; p-z
6). = m+ 2 arctan ' — -+ 5 arctan—1- T,. n+r'

(13)

As a result, the new transition function 0'~' is
given as

0'~'=S, QS, ' =exp[i —,'nsgn(z —p)(v x/2r)].

The asymptotics of A „"'in P, ' is

A '"'=ie ggP P 1 1

with g, =exp[i(3@+m)(o'x/2r)], where y=arc-
tan s/r;

(2) & 1
p P,g2(+)g 2(+)

with g,&+&=exp[i(3y+ —,'m)(o'x/2r)] for s —p &0,
while for z - P &0,

(2) ~ ~ -a
p pi-» 2(-)+2 (-)

with g, &
&=exp[i(3y+ 2w)(o x/2x)]. Note that in

P, the asymptotic domain consists of two discon-
nected parts, therefore, it is not surprising that
A.„"' behaves differently in these regions. We
remark that in this gauge on S,' there is the same
bundle type singularity as in the previous one.

One can now see the reason, in this gauge, for
the fractional Pontryagin number: Although A

&

falls off as a pure gauge at infinity, it cannot be
represented by a global pure gauge. '

The calculation of the topological cha. rge (9)
requires some care. Usually (9) is given by the
surface integral of the topological current,

Z„=Tr s„„,.(X'5~& e+ t ~2 X"X~so),

on S' at infinity. Since there are several patches
in our case, when one applies the Gauss theorem
there are additional contributions coming from
the boundaries. However, shrinking the over-
lapping region to the hypersurface o."—r'+ (s
—P)' = 0, which means that on the asymptotic S',
P„',P,', and P, ' are defined as &m ~ y» —

m, -7t
1 1 1& y & —~r, a,nd —4m & y& —&n, respectively,

the total. contribution to the Pontryagin number
comes from infinity only.

Higher derivatives of gauge-invariant quantities
(e.g. , the action density) will be singular on S,',
which means that this surface singularity cannot
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be moved by gauge transformations. Therefore,
our solution depends on eight parameters: four
corresponding to the location of the center, one
to the radius of S,', and three to the direction of
the symmetry axis in R'.

The existence of this solution may be relevant
for an understanding of the structure of the quan-
tum-chromodynamic vacuum, ' and it may provide
a solution of the U(1) problem as advocated by
Crewther. ' Further clarification is needed of
the relevance of these closed stringlike fluctua-
tions to the confinement problem.

Since our solution is cylindrically symmetric,
it can be related to Witten's Ansatz, "which cor-
responds to an Abelian Higgs model defined on a
two-dimensional pseudosphere. As it was pointed
out, "on a two-dimensional noncompact manifold
in a t)'(1) gauge theory there are configurations
with noninteger topological charge even in the
presence of fermionic matter.

We would like to mention that solutions of the
SDE with topological charge other than half-inte-
ger exist. Work is in progress in this direction
and we shall present these results later.
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