or, equivalently, the internal energy U and the specific heat c at $\Gamma = 2$. Their excess parts per particle are found to be

$$U_{\rm exc}/N = -\frac{1}{4}e^2\ln(\pi\rho L^2) - \frac{1}{4}e^2C, \qquad (18)$$

and

$$c_{\rm exc}/N = k_{\rm B} (\ln 2 - \pi^2/24).$$
 (19)

The author is indebted to C. Deutsch, H. DeWitt, J. Ginibre, and J. L. Lebowitz, for helpful remarks and suggestions. The Laboratoire de Physique Théorique et Hautes Energies is a Laboratoire Associé au Centre National de la Recherche Scientifique.

¹R. R. Sari, D. Merlini, and R. Calinon, J. Phys. A:

Gen. Phys. 9, 1539 (1976).

²R. R. Sari and D. Merlini, J. Stat. Phys. <u>14</u>, 91 (1976).

- ³E. H. Hauge and P. C. Hemmer, Phys. Norv. <u>5</u>, 109 (1971), and references quoted therein.
 - ⁴A. Alastuey and B. Jancovici, to be published.
 - ⁵J. Ginibre, J. Math. Phys. <u>6</u>, 440 (1965).

⁶C. L. Mehta, *Random Matrices* (Academic, New York, 1967).

⁷D. R. Nelson, Phys. Rev. B <u>18</u>, 2318 (1978), and references quoted therein.

⁸C. Deutsch and M. Lavaud, Phys. Rev. Lett. <u>31</u>, 921 (1973), and Phys. Rev. A <u>9</u>, 2598 (1974).

⁹C. Deutsch, H. E. DeWitt, and Y. Furutani, Phys. Rev. A 20, 2631 (1979).

¹⁰See, e.g., M. Baus and J. P. Hansen, Phys. Rep. <u>59</u>, 1 (1980).

¹¹See, e.g., D. Henderson and J. A. Barker, in *Liquid State Chemistry*, edited by Douglas Henderson, Volume 8A of Physical Chemistry (Academic, New York, 1971).

Quantum-Statistical Metastability

Ian Affleck

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 22 September 1980)

(neceived 22 September 1300)

Consider a system rendered unstable by both quantum tunneling and thermodynamic fluctuation. The tunneling rate Γ , at temperature β^{-1} , is related to the free energy F by $\Gamma = (2/\hbar) \text{ Im}F$. However, the classical escape rate is $\Gamma = (\omega\beta/\pi) \text{ Im}F$, $-\omega^2$ being the negative eigenvalue at the saddle point. A general theory of metastability is constructed in which these formulas are true for temperatures, respectively, below and above $\omega\hbar/2\pi$ with a narrow transition region of $O(\hbar^{3/2})$.

PACS numbers: 05.30.-d

Consider a system with a localized metastable ground state and a saddle point through which the system can escape to the true ground state. A simple example is a particle in the one-dimensional (1D) potential of Fig. 1. I shall at first concentrate on this example and then generalize to an arbitrary system (which may be a field theory). One may safely assume that both the ground-state energy, $\frac{1}{2}\hbar\omega_0 [V''(x_0) = \omega_0^2]$, and the temperature are small compared to the barrier height, V_0 ; otherwise, the system would not be metastable.

At temperatures small compared to $\hbar\omega_0$ the particle is mainly in the low-lying metastable states. These have wave functions that vanish at $-\infty$, are standing waves normalized to 1 in the well, and give an exponentially small probability current, J, at positive x, which is identified with the decay rate, $\Gamma(E)$. The nonconservation of J requires that E have an (exponentially small) imaginary part¹ which obeys $\Gamma = (2/\hbar) \text{ Im}E$. Taking a Boltzmann average of $\Gamma(E)$, we find $\Gamma = (2/\hbar) \operatorname{Im} F$, to lowest order in exponentially small quantities.

At temperatures large compared to $\hbar\omega_0$ (but still small compared to V_0) we would expect classical thermodynamic fluctuations to dominate. The classical rate² is calculated by setting up a

FIG. 1. The potential for a 1D metastable system.

© 1981 The American Physical Society

Boltzmann distribution of particles to the left of the barrier and identifying Γ with the probability current across the barrier:

$$\Gamma = \frac{\int dp \, dx \, (2\pi\hbar)^{-1} \exp\{-\beta[\frac{1}{2}p^2 + V(x)]\} \delta(x)p\theta(p)}{\int dp \, dx \, (2\pi\hbar)^{-1} \exp\{-\beta[\frac{1}{2}p^2 + V(x)]\}}$$
$$\approx \frac{\omega_0}{2\pi} \exp(-\beta V_0) \,. \tag{1}$$

The step function $\theta(\phi)$ is inserted because there are no particles entering the well from the right. The partition function integral is dominated by the minimum of V. The free energy picks up a small imaginary part from the contribution of the "saddle point" (x = 0) to the partition function.¹ Continuing the x integral into the complex plane at x = 0, one finds

Im
$$F = (\omega_0/2\omega\beta) \exp(-\beta V_0),$$

 $\Gamma = (\omega\beta/\pi) \text{ Im } F.$ (2)

The low- and high-temperature formulas for Γ agree at $\beta_0^{-1} \equiv \hbar \omega/2\pi$. The best one could hope is that each is true everywhere, respectively, below and above β_0^{-1} . Amusingly, this turns out to be almost true; there is a narrow crossover region of $O(\hbar^{3/2})$, where Γ is given by a more complicated expression which is derived below. (The exponential suppression factor in Γ , obtained here, is fairly well known.³ However, a consistent semiclassical procedure for calculating Γ at all temperatures has not been given before and hence the value of the prefactor has not been clear.)

To proceed I must define Γ more carefully. It is the Boltzmann average of the probability current over a set of quantum states. For $E < V_0$, these states were defined above. At $E \ge V_0$, they consist of waves, incident from the left, reflected and transmitted at the barrier. The incident flux per unit energy is set equal to the classical value, $1/2\pi\hbar$. This generalizes the classical notion of a Boltzmann distribution of particles to the left of the barrier. Furthermore, for $E < V_0$ the reflection coefficient goes to 1 and these states merge with the ones defined previously whose density, ρ (as given by the WKB condition⁴), leads to the same incident flux per unit energy, $1/2\pi\hbar$. For $E < V_0$, the WKB linear turning-point formula gives⁴

$$\rho(E)\Gamma(E) = (2\pi\hbar)^{-1} \exp\left[-W(E)/\hbar\right], \qquad (3)$$

$$W(E) = 2 \int_{x_0}^{x_3} dx [2(V - E)]^{1/2}$$
(4)

(see Fig. 1). For $E \ge V_0$ the linear turning-point formula is invalid but the transmission occurs very close to the top of the well so that one may use the transmission coefficient for a parabolic barrier,⁴

$$\rho(E)\Gamma(E) = (2\pi\hbar)^{-1} \{1 + \exp[-2\pi(E - V_0)/\hbar\omega]\}^{-1}.$$
 (5)

This formula gives the correct classical limit above barrier, $\rho(E)\Gamma(E) \rightarrow (2\pi\hbar)^{-1}$ and agrees with the WKB result below barrier,

$$\rho(E)\Gamma(E) \rightarrow (2\pi\hbar)^{-1} \exp\left[-2\pi (V_0 - E)/\hbar\omega\right]$$
$$\approx (2\pi\hbar)^{-1} \exp\left[-W(E)/\hbar\right]. \tag{6}$$

One may now compute the equilibrium decay rate,

$$\Gamma = Z_0^{-1} \int_0^{\infty} dE \,\rho(E) \,\Gamma(E) \exp(-\beta E), \qquad (7)$$

$$Z_{0} = \sum_{n=0}^{\infty} \exp\left[-\left(n + \frac{1}{2}\right)\hbar\omega_{0}\beta\right]$$
(8)

 $= \left[2 \sinh(\frac{1}{2}\beta\hbar\omega_0)\right]^{-1}.$

[Actually at $E = O(\hbar)$ the formula for $\Gamma(E)$ is not correct and the integral should be replaced by a sum; however, as we shall see, this has a negligible effect on Γ .] At low temperatures the integral is dominated by a stationary point, $\beta\hbar$ $= 2\int_{x_2}^{x_3} dx [2(V-E)]^{-1/2} \equiv T(E)$, the period of the classical orbit in the potential -V with energy -E. One can assume that T(E) is monotone decreasing; generalizations are straightforward. Thus $2\pi/\omega \leq T(E) \leq \infty$ and a maximum exists for $\beta^{-1} < \beta_0^{-1} \equiv 2\pi/\hbar\omega$, with

$$\Gamma = Z_0^{-1} |2\pi\hbar T'|^{-1/2} \exp(-S/\hbar), \qquad (9)$$

where S is the action of the classical path. For $\beta^{-1} > \beta_0^{-1}$ the integral cannot be done by steepest descents; however, it is dominated by $E \ge V_0$ where Eq. (5) for $\Gamma(E)\rho(E)$ is valid:

$$\Gamma = Z_0^{-1} \int_{-\infty}^{\infty} dE \left(2\pi\hbar\right)^{-1} \left\{1 + \exp\left[-2\pi \left(E - V_0\right)/\hbar\omega\right]\right\}^{-1} \exp\left(-\beta E\right)$$
$$= Z_0^{-1} \omega \left[4\pi \sin\left(\frac{1}{2}\beta\hbar\omega\right)\right]^{-1} \exp\left(-\beta V_0\right).$$
(10)

389

For $\beta^{-1} \approx \beta_0^{-1}$ the integral is dominated by energies strictly less than but close to V. With use of

$$W(E) = (2\pi/\omega)(V_0 - E) + \frac{1}{2} |T'(V_0)|(V_0 - E)^2,$$

$$\Gamma = Z_0^{-1} \int_{-\infty}^{V_0} dE (2\pi\hbar)^{-1} \exp[-W(E)/\hbar]$$

$$= Z_0^{-1} |2\pi\hbar T'|^{-1/2} \exp[(\beta - \beta_0) |\hbar/T'|^{1/2}] \exp[-\beta V_0 + (\beta - \beta_0)^2\hbar/|2T'|],$$
(12)

where $\operatorname{erf}(x)$ is the error function, $\operatorname{erf}(x) \equiv (2\pi)^{-1/2} \int_{-\infty}^{x} dy \exp(-\frac{1}{2}y^2)$. Asymptotically this formula gives

$$\Gamma = Z_0^{-1} |2\pi\hbar T'|^{-1/2} \exp[-\beta V_0 + (\beta - \beta_0)^2\hbar / |2T'|]$$

at temperatures below β_0^{-1} and $\Gamma = Z_0^{-1}(2\pi\hbar)^{-1}(\beta_0 - \beta)^{-1}\exp(-\beta V_0)$, above β_0^{-1} , thus matching smoothly onto Eqs. (9) and (10) near β_0^{-1} . The more complicated Eq. (12) is only required for $(\beta^{-1} - \beta_0^{-1})$ of $O(\hbar^{3/2}(\omega/2\pi)^2|T'|^{1/2})$.

One now must calculate Im*F*. This is done by writing *Z* as a functional integral and evaluating it by steepest descents. Saddle points are periodic solutions of the equations of motion with potential -V. The trivial saddle point, $x(T) = x_0$, gives

$$Z_0 = N \left[\operatorname{Det} \left(-\frac{d^2}{d\tau^2} + \omega_0^2 \right) \right]^{-1/2} = \left[2 \sinh \left(\frac{1}{2} \hbar \omega_0 \beta \right) \right]^{-1}.$$
(13)

[The determinant is calculated for eigenfunctions obeying periodic boundary conditions and the constant, N, has been chosen to make Z_0 agree with Eq. (8).] There is another saddle point, the periodic orbit discussed previously, $\bar{x}(\tau)$. [For $\beta^{-1} > \beta_0^{-1}$ this reduces to a constant, $\bar{x}(\tau) = 0$.] The second variation operator, $-\frac{d^2}{d\tau^2} + V''(\bar{x})$, has (for $\beta^{-1} < \beta_0^{-1}$) a periodic zero mode, \bar{x} , and since \bar{x} has one node, there must be one negative eigenvalue. Introducing a time-translation collective coordinate⁵ to eliminate the zero mode and deforming the integration contour with respect to the negative mode,¹ I find

$$\operatorname{Im} \boldsymbol{F} = (\hbar/2)Z_0^{-1} (W/2\pi\hbar)^{1/2} N \left| \operatorname{Det'} \left[-d^2/d\tau^2 + V''(\bar{x}) \right] \right|^{-1/2} \exp(-S/\hbar).$$
(14)

(Det' has the zero eigenvalue omitted.) Finally Det' can be related to the classical motion,⁶ N^{-2} Det' $\left[-d^2/d\tau^2 + V''(\bar{x})\right] = T'W$, verifying the relation $\Gamma = 2\hbar^{-1}$ ImF. For $\beta^{-1} > \beta_0^{-1}$, there is no zero mode but there is still a (constant) negative mode:

$$Im F = Z_0^{-1} (2\beta)^{-1} N \left| Det(-d^2/d\tau^2 - \omega^2) \right|^{-1/2} \exp(-\beta V_0),$$

= $Z_0^{-1} [4\beta \sin(\frac{1}{2}\beta\hbar\omega)]^{-1} \exp(-\beta V_0),$ (15)

verifying $\Gamma = (\omega \beta / \pi) \operatorname{Im} F$.

The classical limit occurs for
$$\beta^{-1} \gg \beta_0^{-1}$$
:

$$\Gamma = (\omega/2\pi) \left[\sinh(\frac{1}{2}\beta\hbar\omega_0) / \sin(\frac{1}{2}\beta\hbar\omega) \right] \exp(-\beta V_0) \rightarrow (\omega_0/2\pi) \exp(-\beta V_0).$$
(16)

It is also clear that the correct zero-temperature limit is achieved since $\text{Im}F \rightarrow \text{Im}E_0$, where E_0 is the ground-state energy.

All that remains is to generalize to multidimensional systems. Thus consider a particle in an *n*-dimensional potential with a relative minimum at \bar{x}_0 , $V = \frac{1}{2}\omega_0^2 x_1'^2 + \frac{1}{2}\sum_{i=2}^n (\omega_0^{i})^2 x_i'^2$ for some set of coordinates x_i' , and a saddle point at $\bar{0}$, $V = -\frac{1}{2}\omega^2 x_1^2 + \frac{1}{2}\sum_{i=2}^n (\omega^i)^2 x_i^2$. The contribution to Γ from states of energy $E < V_0$ is again suppressed by $\exp[-W(E)/\hbar]$, where now $W(E) = \int ds [2V - E)]^{1/2}$, with *s* labeling distance along the orbit of energy -E. The prefactor in $\rho(E)\Gamma(E)$ is now rather complicated. Fortunately, life simplifies

for $V_0 - E \ll V_0$. At these energies the classical solution becomes 1D, $x_1 \propto \sin(\omega \tau)$, $x_i = 0$, i > 1. Furthermore, the tunneling region becomes very narrow and so the quadratic approximation to V may be used. Thus the wave-function factors, $\psi(\hat{\mathbf{x}}) = \prod_{i=1}^{n} \psi_i(x_i)$. For i > 1, ψ_i must be a harmonic oscillator wave function with frequency ω_i . ψ_1 is simply the 1D solution used above. Writing $E = \sum_{i=1}^{n} E_i$, the transmission coefficient depends on E_1 only and takes the 1D form. The Boltzmann integral takes the 1D form multiplied by a discrete sum over harmonic-oscillator energies for the transverse degrees of freedom,

$$\Gamma = Z_0^{-1} \int_0^\infty dE_1 \exp(-\beta E_1) \rho(E_1) \Gamma(E_1) \prod_{i=2}^n \sum_{n_i=0}^\infty \exp[-\beta \hbar \omega_i (n_i + \frac{1}{2})].$$
(17)

Similar factorization occurs in Z_0 , giving

$$\Gamma_n = \Gamma_1 \prod_{i=2}^n \sinh(\frac{1}{2}\omega_0^i \hbar\beta) / \sin(\frac{1}{2}\omega^i \hbar\beta), \qquad (18)$$

where Γ_1 is given by Eqs. (9), (12), and (10) as the temperature increases from somewhat below $\hbar\omega/2\pi$ right up to the classical range.

Now consider ImF. As the temperature approaches β_0^{-1} from below, the Gaussian fluctuations in transverse directions approximately factor, giving $\prod_{i=2}^{n} \{ \text{Det}[-d^2/d\tau^2 + (\omega^i)^2] \}^{-1/2} ;$ above β_0^{-1} this factorization becomes exact since the classical solution is then time independent. These extra factors are just the ones occurring in Γ_n verifying the two formulas relating Γ to ImF at all temperatures above β_0^{-1} . As the temperature is lowered further, I expect $\Gamma = (2/\hbar)$ ImF to remain true by the general argument in the second paragraph. These results are directly applicable to quantum field theory.⁷

I am very grateful for many useful conversations with J. Preskill. I would also like to thank A. Guth and B. I. Halperin for helpful discussions.

The research was supported in part by the National Science Foundation under Grant No. PHY-77-22864, and the Harvard Society of Fellows.

¹This formula has been used to calculate Γ by J. S. Langer, Ann. Phys. (N.Y.) <u>41</u>, 108 (1967); and by C. Callan and S. Coleman, Phys. Rev. D <u>16</u>, 1762 (1977).

 2 The most thorough treatment of classical metastability is probably that of J. S. Langer, Ann. Phys. (N.Y.) <u>54</u>, 258 (1969).

³W. H. Miller, J. Chem. Phys. <u>61</u>, 1823 (1974), and <u>62</u>, 1899 (1975), and <u>63</u>, 1166 (1975); A. D. Linde, Phys. Lett. <u>70B</u>, 306 (1977); R. J. Noble, Phys. Rev. D <u>20</u>, 3179 (1979).

⁴See, for example, L. Landau and E. Lifschitz, *Quantum Mechanics* (Pergamon, Oxford, 1977).

⁵See, for example, S. Coleman, *The Whys of Subnuclear Physics*, Proceedings of the School of Physics "Ettore Majorana," 1977, edited by A. Zichichi (Plenum, New York, 1979), pp. 805-916.

⁶R. J. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D 10, 4114 (1974).

⁷I. Affleck, to be published.