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or, equivalently, the internal energy U and the
specific heat g at I'=2. Their excess parts per
particle are found to be

and

U,„,/N= —,'e —ln(rrpL ) ——,'e'C,

c,„JN= k s (ln2 —n'/24).

(1S)

(19)
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Consider a system rendered unstable by both quantum tunneling and thermodynamic
fluctuation. The tunneling rate 1, at temperature P, is related to the free energy E by
I'= (2/S) ImF. However, the classical escape rate is I"= (~P/n) ImF, —&u being the nega-
tive eigenvalue at the saddle point. A general theory of metastability is constructed in
which these formulas are true for temperatures, respectively, below and above uk/2v
with a narrow transition region of O(@3 ).

PACS numbers: 05.30.-d

Consider a system with a localized metastable
ground state and a saddle point through which the
system can escape to the true ground state. A
simple example is a particle in the one-dimen-
sional (1D) potential of Fig. 1. I shall at first
concentrate on this example and then generalize
to an arbitrary system (which may be a field the-
ory). One may safely assume that both the ground-
state energy, 2&to, [V"(s,) =to,'], and the tempera-
ture are small compared to the barrier height,
V„' otherwise, the system would not be metasta-
ble.

At temperatures small compared to S~, the par-
ticle is mainly in the low-lying metastable states.
These have wave functions that vanish at —, are
standing waves normalized to 1 in the well, and
give an exponentially small probability current,
J, at positive x, which is identified with the de-
cay rate, I (E). The nonconservation of J re-
quires that E have an (exponentially small) imagi-
nary part' which obeys I = (2/&) ImE. Taking a

Boltzmann average of I"(E), we find I' = (2/5) ImF,
to lowest order in exponentially small quantities.

At temperatures large compared to @to, (but
still small compared to V,) we would expect clas-
sical thermodynamic fluctuations to dominate.
The classical rate' is calculated by setting up a

FIG. 1. The potential for a 1D metastable system.
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Boltzmann distribution of particles to the left of
the barrier and identifying 1 with the probability
current across the barrier:

ldPd (2 @) 'e p[-P[-'O'+V@)])&( )P~9)
jdpdx(2~@) 'exp] P-[2P'+V(x)])

ezp(-P V,) .

The step function 8(P) is inserted because there
are no particles entering the well from the right.
The partition function integral is dominated by
the minimum of V. The free energy picks up a
small imaginary part from the contribution of the
"saddle point" g =0) to the partition function. '
Continuing the i integral into the complex plane
atx =0, one finds

pw)1'(E) =(»~) "xpl- ~(E)/~],

W(E) =2f dx[2(v -E)]'i'
(see Fig. 1). For E & V, the linear turning-point
formula is invalid but the transmission occurs
very close to the top of the well so that one may
use the transmission coefficient for a parabolic
barrier, 4

(4)

p(E)i'(E)

= (21Th) '(1+exp[-2&(E- V,)/@~])

This formula gives the correct classical limit
above barrier, p(E)I'(E) - (2v&) ' and agrees with
the WEB result below barrier,

the same incident flux per unit energy, I/2w8.
For E & V„ the WEB linear turning-point formula
gives'

ImF =(co,/2(uP) exp(-PV, ),
I' = (&uP/&) ImF. (2)

p(E)I'(E)- (2mb) ' exp[- 2n (V, -E)/h(u]

= (2~5)- ' exp[- W(E)/n]. (6)

The low- and high-temperature formulas for 1
agree at P, '—=Su/2m. The best one could hope is
that each is true everywhere, respectively, be-
low and above P, '. Amusingly, this turns out to
be almost true; there is a narrow crossover re-
gion of 0(@'"), where I is given by a more com-
plicated expression which is derived below. (The
exponential suppression factor in I', obtained
here, is fairly well know'n. ' However, a consis-
tent semiclassical procedure for calculating I' at
all temperatures has not been given before and
hence the value of the prefactor has not been
clear. )

To proceed I must define 1 more carefully. It
is the Boltzmann average of the probability cur-
rent over a set of quantum states. For E V„
these states were defined above. At E ~ V„ they
consist of waves, incident from the left, reflect-
ed and transmitted at the barrier. The incident
flux per unit energy is set equal to the classical
value, I/2wk. This generalizes the classical no-
tion of a Boltzmann distribution of particles to the
left of the barrier. Furthermore, for E & V, the
reflection coefficient goes to 1 and these states
merge with the ones defined previously whose den-
sity, p (as given by the WEB condition' ), leads to

One may now compute the equilibrium decay rate,

I' =Z, ' J, dE p(E) I'(E) exp(- PE),

Zo = Q exp[- (n +2)@'(sop]
n=0

= [2 sinh(2Ph(u, )]

[Actually at E =O(R') the formula for I'(E) is not
correct and the integral should be replaced by a
sum; however, as we shall see, this has a negli-
gible effect on I .] At low temperatures the inte-
gral is dominated by a stationary point, Pk
=2f„,'de[2(v-E)] '"=T(E), the period of the
classical orbit in the potential —V with energy
-E. One can assume that T(E) is monotone de-
creasing; generalizations are straightforward.
Thus 2m/&u & T(E) & ~ and a maximum exists for
P '&Po '=—2m/h(u, with

I' =Z, '~2vhT'~ '~2 exp(-'S/5),

where S is the action of the classical path. For
p '& p, ' the integral cannot be done by steepest
descents; however, it is dominated by E & V,
where Eq. (5) for I'(E)p(E) is valid:

I =Z, 'f dE(2wk) '(I+e p[-x2m(E —V,)/k&u]) 'exp(-PE)

=Z, '(v[4~ sin(2P+~)] 'ezp( PVO)- (10)
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For p '=po ' the integral is dominated by energies strictly less than but close to V. With use of

W(E) =(2~/~)(V, -E)+llT'(V.)I(V, -E)',
I =Z f 'dE(2m') 'exp[-W(E)/h]

=Z, '!2&hT'I '"erf[(p -P,) I@/T'I '"] exp[- pV, +(0 —p,)'@/I2T'I ],
where erf(x) is the error function, erf(x) = (2&) '"f dy exp(- &y'). Asymptotically this formula gives

(12)

I' =Z 'I2mRT'I '"exp[-PV, +y P-,)'@/I2T'll

at temperatures below p ~ and I" =Z (2m@) (pa —p) exp(- pV ), above p, ', thus matching smoothly
onto Zqs. (9) and (10) near po '. The more complicated Eq. (12) is only required for (p

' -l30 ') of
o(k'"((u/2m) IT'I ' )

One now must calculate ImF. This is done by writing Z as a functional integral and evaluating it by
steepest descents. Saddle points are periodic solutions of the equations of motion with potential —V.
The trivial saddle point, x(T) =x„gives

Z, =N[Det( d'/d-T'+no')] '~' =[2 sinh(21m, P)]

ImF =(5/2)Z, '(W/2vt)' 'NIDet'[-d'/dT'+V" (x )] I

' 'exp(-S/@).

(Det' has the zero eigenvalue omitted. ) Finally Det' can be related to the classical motion, '
N 'Det'[ d'/dr'-+V"(x)]=T'W, verifying the relation I'=2K 'ImF. For p '&p, ', there is no zero
mode but there is still a (constant) negative mode:

ImF =Zo '(2p) 'NIDet(-d'/dT' —&u')I ' 'ezp(-pV, ),
=Z, '[4p sin(~pie)] 'exp(-PV, ),

verifying I" = (&P/&) imF.
The classical limit occurs for p '»p, ':

I' =(&o/2m)[sinh(2p+~, )/sin(2P@~)]exp( PV,) --(~,/2~) ezp( PV,)-

[The determinant is calculated for eigenfunctions obeying periodic boundary conditions and the constant,
N, has been chosen to make Z, agree with Eq. (8).] There is another saddle point, the periodic orbit
discussed previously, x(T). [For p '&p, ' this reduces to a, constant, x(T) =0.] The second variation
operator, —d'/dT'+V" (x ), has (for P '&P, ') a periodic zero mode, x, and since x has one node, there
must be one negative eigenvalue. Introducing a time-translation collective coordinate to eliminate the
zero mode and deforming the integration contour with respect to the negative mode, ' I find

It is also clear that the correct zero-temperature
limit is achieved since Imp - ImE„where E, is
the ground-state energy.

All that remains is to generalize to multidimen-
sional systems. Thus consider a particle in an n-
dimensional potential with a relative minimum at
xo, V =2~,'x,"+a 5~~, (&u, ')'x&" for some set of
coordinates x, ', and a saddle point at 1), V
= —2&v'x, '+2 Q", ,(&u')'x, '. The contribution to I
from states of energy E & V, is again suppressed
by exp[- W(E)/@1, where now W(E) = f ds[2V
-E)]'", with s labeling distance along the orbit
of energy -E. The prefactor in p(E)I'(E) is now

rather complicated. Fortunately, life simplifies

! for V, -E«V, . At these energies the classical
solution becomes 1D, x, ~ sin(&u~), x, =0, i & 1.
Furthermore, the tunneling region becomes very
narrow and so the quadratic approximation to V

may be used. Thus the wave-function factors,
g(x) =II, , g&(x;). For i & 1, P& must be a harmonic
oscillator wave function with frequency &u, . P, is
simply the 1D solution used above. Writing E

,E„ the transmission coefficient depends
on E, only and takes the 1D form. The Boltzmann
integral takes the 1D form multiplied by a dis-
crete sum over harmonic-oscillator energies for
the transverse degrees of freedom,

00 n

r =Z f, dE, ezp(-PE, )p(E, )1"(E,) g Q exp[-P@~, (n&+2)].
4=2 n]=0
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Similar factorization occurs in Z„giving
n

I'„=I', g sinh(2(u, 'SP)/sin(a(u'@P), (18)

where I', is given by Egs. (9), (12), and (10) as
the temperature increases from somewhat below
bc'/2w right up to the classical range.

Now consider ImF. As the temperature ap-
proaches P, ' from below, the Gaussian fluctua-
tions in transverse directions approximately
factor, giving g";,(Det[- d'/d~'+ (~')'])
above P, ' this factorization becomes exact since
the classical solution is then time independent.
These extra factors are just the ones occurring
in I'„verifying the two formulas relating I" to
ImF at all temperatures above p, ' and also at
temperatures somewhat below P, '. As the
temperature is lowered further, I expect I
= (2/5) ImF to remain true by the general argu-
ment in the second paragraph. These results
are directly applicable to quantum field theory. '
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