Exact Results for the Two-Dimensional One-Component Plasma

B. Jancovici

Laboratoire de Physique Théorique et Hautes Energies, Université de Paris-Sud, F-91405 Orsay, France

(Received 5 November 1980)

At some special temperature T_0 , the distribution functions of a two-dimensional onecomponent plasma are explicitly computed up to the four-body one. The correlations have a Gaussian falloff. The distribution functions at T_0 are used for building a temperature expansion around T_0 .

PACS numbers: 05.20.-y, 51.10.+y, 52.52.-b

A one-component plasma is a system of N identical particles of charge e embedded in a uniform neutralizing background of opposite charge. In two dimensions, the Coulomb interaction potential between two particles at a distance r from one another is

$$e^{2}v(r) = -e^{2}\ln(r/L),$$
 (1)

where *L* is a length scale. If one assumes the particles to be confined in a disk of radius R, the total potential is¹

$$V = -\frac{3N^2e^2}{8} + \frac{Ne^2}{2}\ln\frac{R}{L} + \frac{Ne^2}{2}\sum_{i} \left(\frac{r_i}{R}\right)^2$$
$$-e^2\sum_{i>i}\ln\frac{r_{ij}}{R}, \qquad (2)$$

where $\vec{\mathbf{r}}_i$ is the position of particle *i* (the origin is chosen at the center of the disk). By using the scaled variables $\vec{\mathbf{z}}_i = N^{1/2} \vec{\mathbf{r}}_i/R$, one easily shows that the excess free energy per particle, which must have a well-behaved thermodynamic limit,² is necessarily of the form

$$F_{\rm exc}/N = -\frac{1}{4}e^2\ln(\pi\rho L^2) + f(T), \qquad (3)$$

where $\rho = N/\pi R^2$ is the number density, and f(T) is some function of the temperature alone. Therefore, the equation of state has the simple form³

$$p = (k_{\rm B}T - \frac{1}{4}e^2)\rho, \qquad (4)$$

where $k_{\rm B}$ is Boltzmann's constant and T is the temperature. More information can be obtained at the special temperature $T_0 = e^2/2k_{\rm B}$; recently, the free energy has been exactly computed⁴ at T_0 , with the result

$$F_{\rm exc}/N = -\frac{1}{4}e^2\ln(\pi\rho L^2) + e^2\left[\frac{1}{2} - \frac{1}{4}\ln(2\pi)\right].$$
 (5)

In the present Letter, the distribution functions at T_0 are explicitly computed up to the four-body one and used for building a temperature expan-

sion around T_0 .

Using for \vec{z}_i polar coordinates (z_i, θ_i) , one obtains at T_0 from (2) a Boltzmann factor

$$\exp(-V/k_{\rm B}T_{\rm 0}) = A \exp(-\sum_{i} z_{i}^{2}) |\prod_{i>j} (Z_{i} - Z_{j})|^{2}, \quad (6)$$

where A is a constant and $Z_i = z_i \exp(i\theta_i)$. This expression (6), which also occurs in the theory of random matrices, can be integrated upon variables $\vec{z}_i (0 \le z_i \le \sqrt{N})$ by expanding the Vandermonde determinant $\prod (Z_i - Z_j)$. One obtains the partition function^{5, 6}

$$\int \exp(-V/k_{\rm B} T_{\rm o}) d^2 z_1 \cdots d^2 z_N$$
$$= A \pi^N N! \prod_{i=1}^N \gamma(j,N), \qquad (7)$$

where

$$\gamma(j,N) = \int_0^{\sqrt{N}} \exp(-z^2) z^{2(j-1)} 2z \, dz \tag{8}$$

$$= \int_{0}^{N} e^{-t} t^{j-1} dt$$
 (9)

is the incomplete gamma function; in Ref. 4, (8) was used for computing the free energy (5). One can also obtain the *n*-body distribution functions^{5, 6}

$$g(1,...,n) = \exp(-\sum_{i=1}^{n} z_i^{2}) \operatorname{Det}[K_N(Z_i Z_j^*)]_{i,j=1,...,n}, (10)$$

where

2

$$K_{N}(Z_{i}Z_{j}^{*}) = \sum_{l=1}^{N} \frac{(Z_{i}Z_{j}^{*})^{l-1}}{\gamma(l,N)} .$$
(11)

In the thermodynamic limit $N \to \infty$, $\gamma(l, N) \to (l - 1)!$, and $K_N(Z_i Z_j^*) \to \exp(Z_i Z_j^*)$ [the terms with l close to N make no trouble since $\gamma(N, N) \sim \frac{1}{2}(N - 1)!$]. In this limit, one obtains from (10) the following explicit distribution functions: The one-body density $\rho(1) = \rho g(1)$ has the constant value ρ . The pair distribution function is

$$g(1,2) = 1 - \exp(-\pi \rho r_{12}^{2}), \qquad (12)$$

where $\vec{r}_{12} = \vec{r}_2 - \vec{r}_1$. The three-body distribution function is

$$g(1, 2, 3) = 1 - \exp(-\pi\rho r_{12}^{2}) - \exp(-\pi\rho r_{23}^{2}) - \exp(-\pi\rho r_{31}^{2}) + 2\exp[-\frac{1}{2}\pi\rho(r_{12}^{2} + r_{23}^{2} + r_{31}^{2})]\cos[2\pi\rho A(1, 2, 3)],$$
(13)

where A(1, 2, 3) is the area of the triangle formed by particles (1, 2, 3). The four-body distribution function is

$$g(1,2,3,4) = 1 - \exp(-\pi\rho r_{12}^{2}) - \cdots + \exp[-\pi\rho (r_{12}^{2} + r_{34}^{2})] + \cdots + 2 \exp[-\frac{1}{2}\pi\rho (r_{12}^{2} + r_{23}^{2} + r_{31}^{2})] \cos[2\pi\rho A(1,2,3)] + \cdots - 2 \exp[-\frac{1}{2}\pi\rho (r_{12}^{2} + r_{23}^{2} + r_{34}^{2} + r_{41}^{2})] \cos[2\pi\rho A(1,2,3,4)] - \cdots,$$
(14)

where

$$A(1,2,3,4) = \frac{1}{2} |\vec{\mathbf{r}}_{13} \times \vec{\mathbf{r}}_{24}|$$
(15)

is the area of the quadrilateral formed by particles (1, 2, 3, 4) (or a difference of areas if that quadrilateral has intersecting sides).

These distribution functions are translationally invariant. They show neither long-range order nor quasi-long-range⁷ order: At T_0 , the system is a fluid. A somewhat surprising result is that *the correlations have a Gaussian falloff* rather than the exponential one which is found^{8,9} in the high-temperature Debye approximation. One easily checks that the distribution functions obey the perfect screening and other sum rules.¹⁰

It is convenient to express the temperature T through the dimensionless coupling constant $\Gamma = e^2/k_BT$; at T_{0} , $\Gamma = 2$. Using the distribution functions at $\Gamma = 2$, one can now build expansions in powers of $\Gamma - 2$. The pair distribution function at Γ is

$$g(1,2;\Gamma) = g(1,2) + (\Gamma-2) \{ -g(1,2)v(1,2) - 2\rho \int [g(1,2,3) - g(1,2)]v(1,3)d3 - \frac{1}{2}\rho^2 \int [g(1,2,3,4) - g(1,2)g(3,4) - g(1,2,3) - g(1,2,4) + 2g(1,2)] \times v(3,4)d3d4 \} + \cdots$$
(16)

where the absence of Γ in the arguments of g means $\Gamma = 2$. Equation (16) differs from the usual perturbation expansion for neutral fluids¹¹ in two ways. First, there are additional terms due to the particle-background interaction. Second, as a consequence of perfect screening, there is *no* term of order 1/N in g(1,2,3,4) - g(1,2)g(3,4) when the pairs (1,2) and (3,4) are widely separated [for neutral fluids, such terms give additional finite contributions to (16) in the thermodynamic limit]. One finds from (16)

$$g(r; \Gamma) = 1 - \exp(-\pi\rho r^{2}) + (\Gamma - 2) \left\{ -\exp(-\pi\rho r^{2}) \left[\ln(\pi\rho r^{2}) + c \right] + \operatorname{Ei}(-\pi\rho r^{2}) - \frac{1}{2} \operatorname{Ei}(-\frac{1}{2}\pi\rho r^{2}) + \frac{1}{2} \exp(-\pi\rho r^{2}) \operatorname{Ei}(\frac{1}{2}\pi\rho r^{2}) \right\} + \cdots,$$
(17)

where C = 0.5772... is Euler's constant and Ei is the experimental-integral function. It can be checked that $g(r; \Gamma)$ obeys the usual sum rules¹⁰ to order $\Gamma - 2$.

At small r, for any value of Γ , $g(r; \Gamma)$ should exhibit a bare-potential factor $\exp(\Gamma \ln r)$; this factor gives a $\ln r$ behavior both in the Debye approximation⁸ valid near $\Gamma = 0$ and in the present expansion (17) around $\Gamma = 2$. At large r, the bracket in (17) behaves like $2 \exp(-\frac{1}{2}\pi\rho r^2)/\pi\rho r^2$; thus, the correction of order $\Gamma - 2$ introduces a correlation which is still Gaussian-like at long distance, but with a longer range. Further corrections of increasing order in $\Gamma - 2$ would have increasing ranges; presumably, if the whole series could be summed, one would recover near $\Gamma = 0$ the exponential falloff of the Debye approximation. Conversely, if the full Debye expansion around $\Gamma = 0$ could be summed, it should give a Gaussian at $\Gamma = 2$.

For large values of Γ , one expects oscillations in g(r). Since the correction of order $\Gamma - 2$ in (17) has the sign of $\Gamma - 2$, it is tempting to conjecture that g(r) changes from a monotonic to an oscillating behavior precisely at $\Gamma = 2$.

Knowing $g(r; \Gamma)$ up to the order $\Gamma - 2$, one can compute the free energy up to the order $(\Gamma - 2)^2$,

or, equivalently, the internal energy U and the specific heat c at $\Gamma = 2$. Their excess parts per particle are found to be

$$U_{\rm exc}/N = -\frac{1}{4}e^2\ln(\pi\rho L^2) - \frac{1}{4}e^2C, \qquad (18)$$

and

$$c_{\rm exc}/N = k_{\rm B} (\ln 2 - \pi^2/24).$$
 (19)

The author is indebted to C. Deutsch, H. DeWitt, J. Ginibre, and J. L. Lebowitz, for helpful remarks and suggestions. The Laboratoire de Physique Théorique et Hautes Energies is a Laboratoire Associé au Centre National de la Recherche Scientifique.

¹R. R. Sari, D. Merlini, and R. Calinon, J. Phys. A:

Gen. Phys. 9, 1539 (1976).

²R. R. Sari and D. Merlini, J. Stat. Phys. <u>14</u>, 91 (1976).

- ³E. H. Hauge and P. C. Hemmer, Phys. Norv. <u>5</u>, 109 (1971), and references quoted therein.
 - ⁴A. Alastuey and B. Jancovici, to be published.
 - ⁵J. Ginibre, J. Math. Phys. <u>6</u>, 440 (1965).

⁶C. L. Mehta, *Random Matrices* (Academic, New York, 1967).

⁷D. R. Nelson, Phys. Rev. B <u>18</u>, 2318 (1978), and references quoted therein.

⁸C. Deutsch and M. Lavaud, Phys. Rev. Lett. <u>31</u>, 921 (1973), and Phys. Rev. A <u>9</u>, 2598 (1974).

⁹C. Deutsch, H. E. DeWitt, and Y. Furutani, Phys. Rev. A 20, 2631 (1979).

¹⁰See, e.g., M. Baus and J. P. Hansen, Phys. Rep. <u>59</u>, 1 (1980).

¹¹See, e.g., D. Henderson and J. A. Barker, in *Liquid State Chemistry*, edited by Douglas Henderson, Volume 8A of Physical Chemistry (Academic, New York, 1971).

Quantum-Statistical Metastability

Ian Affleck

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 22 September 1980)

(neceived 22 September 1300)

Consider a system rendered unstable by both quantum tunneling and thermodynamic fluctuation. The tunneling rate Γ , at temperature β^{-1} , is related to the free energy F by $\Gamma = (2/\hbar) \text{ Im}F$. However, the classical escape rate is $\Gamma = (\omega\beta/\pi) \text{ Im}F$, $-\omega^2$ being the negative eigenvalue at the saddle point. A general theory of metastability is constructed in which these formulas are true for temperatures, respectively, below and above $\omega\hbar/2\pi$ with a narrow transition region of $O(\hbar^{3/2})$.

PACS numbers: 05.30.-d

Consider a system with a localized metastable ground state and a saddle point through which the system can escape to the true ground state. A simple example is a particle in the one-dimensional (1D) potential of Fig. 1. I shall at first concentrate on this example and then generalize to an arbitrary system (which may be a field theory). One may safely assume that both the ground-state energy, $\frac{1}{2}\hbar\omega_0 [V''(x_0) = \omega_0^2]$, and the temperature are small compared to the barrier height, V_0 ; otherwise, the system would not be metastable.

At temperatures small compared to $\hbar\omega_0$ the particle is mainly in the low-lying metastable states. These have wave functions that vanish at $-\infty$, are standing waves normalized to 1 in the well, and give an exponentially small probability current, J, at positive x, which is identified with the decay rate, $\Gamma(E)$. The nonconservation of J requires that E have an (exponentially small) imaginary part¹ which obeys $\Gamma = (2/\hbar) \text{ Im}E$. Taking a Boltzmann average of $\Gamma(E)$, we find $\Gamma = (2/\hbar) \operatorname{Im} F$, to lowest order in exponentially small quantities.

At temperatures large compared to $\hbar\omega_0$ (but still small compared to V_0) we would expect classical thermodynamic fluctuations to dominate. The classical rate² is calculated by setting up a

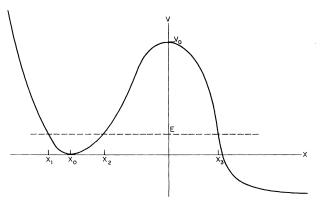


FIG. 1. The potential for a 1D metastable system.

© 1981 The American Physical Society