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Exact Results for the Two-Dimensional One-Component Plasma
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At some special temperature 1'0, the distribution functions of a two-dimensional one-
component plasma are explicitly computed up to the four-body one. The correlations
have a Gaussian falloff. The distribution functions at 1'0 are used for building a temper-
ature expansion around &0.

PACS numbers: 05.20.-y, 51.10.+y, 52.52.-b

A one-component plasma is a system of N iden-
tical particles of charge e embedded in a uniform
neutralizing background of opposite charge. In
two dimensions, the Coulomb interaction poten-
tial between two particles at a distance r from
one another is

e n(r) = —e'ln(r/L),

where L is a length scale. If one assumes the
particles to be confined in a disk of radius R,
the total potential is'

sion around T,.
Using for z, polar coordinates (z;, 9;), one ob-

tains at To from (2) a Boltzmann factor

exp(- V/k~ T,)
=&exp(-Pz )III(z;-z, )I', (8)

where A is a constant and Z, =z; exp(i8;). This
expression (6), which also occurs in the theory
of random matrices, can be integrated upon vari-
ables z, (0~ z, ~ KN) by expanding the Vander-
monde determinant Q(Z, -Z, ). One obtains the
partition function"

f exp(- V/k~ T,)d'z, ~ ~ d'z„
—e'Q ln ", (2) =X~"N. g y(j, N),

j= 1

where r, is the position of particle i (the origin
is chosen at the center of the disk). By using the
scaled variables z,. =N"'r, /R, one easily shows
that the excess free energy per particle, which
must have a well-behaved thermodynamic limit, '
is necessarily of the form

F,„JN= ——,
'

eln(n Lp') f+(T),

where p =N/wR' is the number density, and f (T)
is some function of the temperature alone. There-
fore, the equation of state has the simple form'

p = (k,T ——,'e')p,

where kB is Boltzmann's constant and T is the
temperature. More information can be obtained
at the special temperature T, = e'/2k B; recently,
the free energy has been exactly computed at Tp,
with the result

F,„JN= ——,'e' In(mpL') +e'[—,——,In(2v)].

In the present Letter, the distribution functions
at T, are explicitly computed up to the four-body
one and used for building a temperature expan-

where

y(j, N) = f~"exp(-z')z"' '&2z dz (8)

In the thermodynamic limit N- ~, y(l, N) —(l
—1)!, and K„(Z,. Z,.*)—exp(Z,.Z,.*) [the terms with
l close to N make no trouble since y(N, N) - —,(N
—1)!]. In this limit, one obtains from (10) the
following explicit distribution functions: The one-
body density p(1) = pg(1) has the constant value p.
The pair distribution function is

g (1,2) = 1 —exp(- ~pr»'), (12)

= f"e 't' 'dt (9)

is the incomplete gamma function; in Ref. 4, (8)
was used for computing the free energy (5). One
can also obtain the n-body distribution functions"

g(1, . . . , n)

n

= exp(- Q z ) D«[K (Z; Z,*)];;=& . . „, (1o)
i= 1

where
N (z z g)/-1

K„(z,z,.*)—P (l )y, N
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where ry2 rg r, The three-body distribution function is

g (1,2, 3) = 1 —exp(- ~pr»') —exp(- wpr»') —exp(- ~pr»')

+ 2 exp[-2mp (r»'+r„'+r»')] cos[2mpA (1,2, 3)],
where A(1, 2, 3) is the area of the triangle formed by particles (1,2, 3). The four-body distribution
function is

g(1, 2, 3, 4) = 1 —exp(- 7tpr»') —~ ~ ~

+exp[- wp(r„'+r„')]+ ~ .
+ 2 exp[- 2mp (r»'+ r»'+r»')] cos[2mpA (1,2, 3)] + ~ ~ ~

-2 exp[- 2np(r»'+r»'+r3~'+r~, ')] cos[2mpA(1, 2, 3, 4)] —~ ~ ~,
where

A(1, 2, 3, 4) = —,'!r»x r

(13)

(14)

is the area of the quadrilateral formed by particles (1,2, 3, 4) (or a difference of areas if that quadri-
lateral has intersecting sides).

These distribution functions are translationally invariant. They show neither long-range order nor
quasi-long-range order: At T, , the system is a fluid. A somewhat surprising result is that the cor-
relations have a Gaussian falloff rather than the exponential one which is found" in the high-tempera, -
ture Debye approximation. One easily checks that the distribution functions obey the perfect screening
and other sum rules. '

It is convenient to express the temperature T through the dimensionless coupling constant I'=e'/
ABT; at T„ I'=2. Using the distribution functions at I'=2, one can now build expansions in powers of
I' —2, The pair distribution function at I' is

g(1, 2; r) =g(1,2) + (r - 2){-g(1,2)v(1, 2) —2p f [g(1,2, 3) -g(1, 2)]v (1,3)d3

——,'p'f!g(1, 2, 3, 4) -g (1,2)g(3, 4) -g(1, 2, 3) -g(1, 2, 4)+2g(1, 2)]

x v (3,4)d 3d4) + ~ (16)

where the absence of I' in the arguments of g means I'=2. Equation (16) differs from the usual per-
turbation expansion for neutral fluids" in two ways. First, there are additional terms due to the par-
ticle-background interaction. Second, as a consequence of perfect screening, there is no term of or-
der 1/N ing(1, 2, 3, 4) -g(1, 2)g(3, 4) when the pairs (1,2) and (3, 4) are widely separated [for neutral
fluids, such terms give additional finite contributions to (16) in the thermodynamic limit]. One finds
from (16)

g(r; I') = 1 —exp(- vpr')+ (I' —2)(- exp(- vpr')[ln(npr') +c]
+ Ei(- zpr') —2 Ei (- ~zn pr') + ~ exp (- wpr') E i (2n pr') j + ~ ~ ~, (1V)

where t."=0.5772. .. is Euler's constant and Ei is
the experimental-integral function. It can be
checked that g(r, I') obeys the usual sum rules"
to order I —2.

At small r, for any value of F, g(r,' I') should
exhibit a bare-potential factor exp(I'lnr); this
factor gives a inc behavior both in the Debye ap-
proximation' valid near I' =0 and in the present
expansion (1V) around I'=2. At large r, the
bracket in (lV) behaves like 2 exp(- 2wpr')/wpr",
thus, the correction of order I —2 introduces a
correlation which is still Gaussian-like at long
distance, but with a longer range. Further cor-
rections of increasing order in I'- 2 would have

! increasing ranges; presumably, if the whole se-
ries could be summed, one would recover near
I =0 the exponential falloff of the Debye approxi-
mation. Conversely, if the full Debye expansion
around 1 = 0 could be summed, it should give a
Gaussian at I' =2.

For large values of I', one expects oscillations
ing(r). Since the correction of order I' —2 in
(lV) has the sign of F —2, it is tempting to con-
jecture that g(r) changes from a monotonic to an
oscillating behavior precisely at I' =2.

Knowing g(r; I') up to the order I —2, one can
compute the free energy up to the order (I' —2)',
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or, equivalently, the internal energy U and the
specific heat g at I'=2. Their excess parts per
particle are found to be

and

U,„,/N= —,'e —ln(rrpL ) ——,'e'C,

c,„JN= k s (ln2 —n'/24).

(1S)

(19)
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Consider a system rendered unstable by both quantum tunneling and thermodynamic
fluctuation. The tunneling rate 1, at temperature P, is related to the free energy E by
I'= (2/S) ImF. However, the classical escape rate is I"= (~P/n) ImF, —&u being the nega-
tive eigenvalue at the saddle point. A general theory of metastability is constructed in
which these formulas are true for temperatures, respectively, below and above uk/2v
with a narrow transition region of O(@3 ).

PACS numbers: 05.30.-d

Consider a system with a localized metastable
ground state and a saddle point through which the
system can escape to the true ground state. A
simple example is a particle in the one-dimen-
sional (1D) potential of Fig. 1. I shall at first
concentrate on this example and then generalize
to an arbitrary system (which may be a field the-
ory). One may safely assume that both the ground-
state energy, 2&to, [V"(s,) =to,'], and the tempera-
ture are small compared to the barrier height,
V„' otherwise, the system would not be metasta-
ble.

At temperatures small compared to S~, the par-
ticle is mainly in the low-lying metastable states.
These have wave functions that vanish at —, are
standing waves normalized to 1 in the well, and
give an exponentially small probability current,
J, at positive x, which is identified with the de-
cay rate, I (E). The nonconservation of J re-
quires that E have an (exponentially small) imagi-
nary part' which obeys I = (2/&) ImE. Taking a

Boltzmann average of I"(E), we find I' = (2/5) ImF,
to lowest order in exponentially small quantities.

At temperatures large compared to @to, (but
still small compared to V,) we would expect clas-
sical thermodynamic fluctuations to dominate.
The classical rate' is calculated by setting up a

FIG. 1. The potential for a 1D metastable system.
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