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variables and commute with all else. Then

H = —2g (ay, +bg, +cX,) (27)

has self-triality. One then satisfies the anticom-
mutation algebra either with p, ,=y, and ~2 =y3&y~2'
and deals withH(y) or one sets y, =2i(,g» p,
= 2'Egg/3, and X2 = 2A/)2(g' and gets the qlladratlc
form H(g)." But note that in all these cases the
existence of a fermion solution to the algebra is
of no use unless we also have a solution in terms
of a or y matrices, for the free Fermi theory is
interesting only because it maps onto a spin prob-
lem.

Since completing this analysis, I have become
aware of the work of Srednicki, Fradkin, and
Suskind, "which also arrives at some of the no-
tions I discussed towards the end of this work on
the role of fermion variables in spin systems.

A longer paper discussing many more issues
is in preparation.
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A careful consideration of the propagation of null geodesics in a black-hole geometry
modified by Hawking-radiation back reaction shows that the event horizon is stable and
shifted only very slightly in radius from what is expected in a vacuum background, con-
trary to a recent claim in the literature.
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The original derivation of the Hawking radiation
from black holes" assumed that the black hole is
static or stationary for the purpose of calculating
the rate and properties of the radiation. Overall
energy conservation requires that the quantum
fluctuations in the vicinity of the event horizon
responsible for the radiation produce an energy-
momentum tensor whose expectation value corre-
sponds to a negative energy flux into the black
hole. Several attempts" ' have been made at a

direct calculation of the effective energy-momen-
tum tensor, which in the absence of a manageable
quantum theory of gravity can be used in a semi-
classical approximation to find the evolution of
the black hole. The geometry, through the classi-
cal Einstein equations, and therefore the propaga-
tion of null geodesics is modified from that ex-
pected in a vacuum black-hole metric.

Tipler' recently considered this back reaction
for spherically symmetric black holes and con-
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eluded that the event horizon is unstable on a
time scale which even for a 1-solar-mass black
hole is as short as 1 sec. There is, in fact, no
such instability. I show in this paper that the
usual quasistationary approximation is indeed
justified as long as the black-hole mass M is
much greater than the Planck mass I p =—(Rc/G)
-10 ' g. The null hypersurface which forms the
event horizon is, as a result of the back reaction,
shifted to a slightly smaller radius than the vac-
uum value r= 2M (G=c =1), by a fractional amount
the order of (mp/M)'. Such a small change is the

~

order of the quantum fluctuations in the geometry'
and is physically negligible.

Like Tipler, I assume the classical background
geometry is spherically symmetric and choose
units such that Q = c = 1. Convenient coordinates
are the circumferential radius r (so the area of
a two-sphere is 4m"') and an advanced time v

which is constant on ingoing radial null geodesics.
These reduce to Eddington-Finkelstein coordi-
nates' in vacuum and are regular on the future
event horizon. A physically general line element
has the form

ds' = —(1 —2m/r) e' ~ do' + 2e ~dv dr + x'(d 9' + sin'0 d y') .
The quantity m has a coordinate-invariant mean-
ing, in that 1 —2m/r is the square of the gradient
of the circumferential radius. Its value as x- ~
is the total gravitational mass of the system.

The Einstein field equations relate m(s, r) and

g(v, r) to the energy-momentum tensor T "' in a
remarkably simple way:

(2)

(3)

(4)

To date there is still some ambiguity in direct
calculations of the expectation value of the regu-
larized quantum energy-momentum tensor in a
Schwar zschild background. ' Fortunately, ener gy
conservation relates the Hawking energy flux at
r» 2m to the energy flux at v-2m, and to first
order in the back reaction the null geodesic tra-
jectories near z= 2m depend only on the energy
flux there. Consistent with the direct calcula-
tions, I assume that in the vacuum appropriate to
a black hole formed by gravitational collapse' an
observer falling across r -2m measures a regu-
lar energy-momentum tensor.

Consider an observer at circumferential radius
r whose rate of change of radius with proper time
is dr/dT. Denote the components of the energy-
momentum tensor in the observer's local refer-
ence frame by T . The relation of the local
frame to the (v, r) coordinates is defined mathe-
matically by the tetrad of orthonormal reactors
8(~)", with

&tj'r/A-L H/v' (9)

in the quasistationary region.
It makes sense to define the black-hole mass at

a given time v to be

M(v) = m(o, r = 2m), (10)

and to scale v so /=0 at r =2m. In a Schwarzs-
child background the Hawking luminosity LH
scales as"

Since the tetrad vector components are regular at
r-2m if dr/dT- —1, as by assumption are theT, the coordinate components

+pv -

p v+(n)(8)
(~) ( ~)

are regular at x-2m and comparable in magni-
tude for p., v=0, 1.

The energy-conservation equation, slightly
simplified with the help of Eqs. (3) and (4), is

(7)

The energy-momentum tensor is expected to be
quasistationary, so the time derivative in Eq. (7)
can be neglected, out to radii small compared
with both the evaporation time of the black hole
and the time since the black hole was formed.
An observer at constant r»2m, but well within
the quasistationary region, measures an energy
flux

T( ' =L /4&g = —e ~T"

By assuming T"„-T"„,Eqs. (4) and (7) give

e «~" = [e ( F —dr/dr) ', dr/dw, 0, 0],

e&,~" =[e (I" —dr/dT) ', F, 0, 0],
where

F-=[1—2m/r+(dr/dT)'] ' '

(5a)

(5b)

L H
= B(m p/M) '.

The coefficient B depends on the number of spin
states of radiatable particles and barrier pene-
tration factors. As long as the temperature of
the black hole is less than 200 MeV or so, M
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= 4vr'T"„= -L H= -B(m p/M)2.

This integrates to

(12)

&10"g, calculations by Page" show that B is
nearly constant, B-10 '. I adopt Eq. (11) to cal-
culate the first-order effects of back reaction.
Since P and fractional variations of m on radial
and time scales the order of M are themselves
first order in LH, integration of Eq. (7) to the
upper limit r =2114 from a lower limit v, started
with Eq. (8), not too large compared with M, if
the slow time dependence of M in applying Eq.
(11) is ignor ed, give s at r = 2M

dM/dv = Bm/Sv

e ~dr/dv = 2(1 —2m/r), (14)

The right-hand side of Eq. (14) is approximated
uniformly through first order in L H for 2m 6 r
&,~ by setting m(v, r) ~M(v). When

~
r/2m —1~

«1, m and M differ only in order (LH)', by the
definition of M and the regularity of m, and so
the fractional error in 1 —2m/r is of order LH
The potential g is of order LH at r/2M —1-1
and even as r-~ is only of order LH ln(L„).

Now consider Eq. (14) at ~r/2m —1~«1, in
order to calculate the initial deviation of the geo-
desics from the event horizon. Let

mined directly from the condition that the tangent
vector be null,

M=[3Bm '(vo —v)]' ' (13) z = r/2M——1.
if, for simplicity, B is assumed constant. The
integration constant v, is the advanced time at
which the black hole disappears.

As raised by Tipler, ' the question of the stabil-
ity or more precisely the existence of the event
horizon is the question of whether a null geodesic
can remain at r-2m during the whole evapora-
tion process to mark the inner boundary of what
is visible from infinity. " The

trajectories

of the
outward radial null geodesics are best deter-

To first order in LH and z, and with the help of
Eq. (12), Eq. (14) can be written

dz/dv =z/4M+Bm p'/M'. (i6)

With the substitution z = 2dr/dv from Eq. (14),
Eq. (16) would become a second order equation
for r identical to Eq. (7) of Tipler. ' Of course,
not all solutions of the second-order equation
are compatible with Eq. (14).

Since Eq. (16) is linear in z it has the straight-
forward solution

z =exp zy+mp exp (17)

where z, is the initial value of z, at v =v, . As v

increases from v, the second term inside the
square brackets rapidly approaches a constant
value. For almost all values of z, the exponential
factor in front causes z to increase rapidly in
magnitude, e-folding on a dynamic time scale.
Even if

~ z, ~

-L„ to begin with, in an astronom-
ically short time ~z

~
will become of order unity

and the null geodesic will begin its escape to x
»2m or, if z&0, its fall to the presumed singu-
larity at x=0. It is this behavior which led Tipler
to claim the event horizon is unstable.

The exponential runaway has nothing to do with

z, = —m p'f (Bdv'/M') exp[-J (dv "/4M) j,

back reaction. It is present even if 5=m p'=0.
The only difference with back reaction is that the
critical value of z, which divides inward-diverg-
ing from outward-diverging geodesics is negative
instead of zero. The event horizon is defined as
the boundary between trapped and escaping null
geodesics. " The event horizon consists of those
null geodesics which remain at ~z ~

«1 at least
until M has decreased to mp. Tipler's claim that
no such solutions exist is false.

The values of z, which generate the event hor-
izon are

(IS)

where v is a time at which M- m p. The precise value of v is unimportant. When Eq. (18) is sub-
stituted back into Eq. (17), the result is

z„(v) =(r„/2M —1) = —mp'J (Bdv'/M') exp[-g (dv"/4M)j. (19)

The uncertainty in e, associated with the breakdown of the classical geometry at j/I-mp produces an
uncertainty in z„(v) which is exponentially small until v is within Av —mp of v, . In this physically ap-
propriate sense the event horizon is very stable.
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An approximation to the solution (19), based on the fact M is nearly constant on dynamical time
scales for M»mp, is

m '
z„= B— dv' exp[ —(v' —v)/4M] = 4L—„, (20)

(2.1)d'r/dA'+ 4 iir T.&„(dx"/dA) dx "/dA. = 0 .
When

I r/2m —11«1, by Eq. (14) I«/d& I««/d&
and

since M»mp also implies (v, —v)/4M»1. A
direct route to Eq. (20) is to neglect dz/dv in Eq.
(16). Note that the change in z„due to back reac-
tion is no larger than the fractional change in m
between the horizon and a radius where the Hawk-
ing flux is well defined.

It is important to remember that Eq. (20) is
just a (very good) approximation. Since z„de-
creases with decreasing M and increasing e, the
true z„must be very slightly (of order LH') less
than the z„given by Eq. (20) to give the required
slightly negative value of dz/dv in Eq. (16).

%hat of the tendency of negative energy density
to bend null geodesics outward? With an affine,
rather than an advanced-time parametrization of
the geodesic, the geodesic deviation equation cor-
responding to Eq. (7) of Tipler is

!2M«r«M/LH, is unchanged by back reaction if
the mass in the static background is identified
with the current mass of the evaporating black
hole.

In conclusion, a semiclassical treatment of
back reaction from the Hawking radiation entire-
ly supports the validity of calculations of the ra-
diation based on a static background geometry.
By the time the back-reaction corrections be-
come appreciable, at M-m p, the classical con-
cept of an event horizon is no longer meaningful.

A less general refutation of Tipler, based on a
specific model for the effective energy-momentum
tensor near the horizon, has been published by
Hajicek and Israel. "

I am grateful to James B. Hartle and David G.
Boulware for helpful discussions.

=T"„e~ —=-,"- —. 22

Indeed d'r/dA. ' &0, but the slight outward curva-
ture as measured by the affine parameter is un-
able to overcome the initial negative value of d~/
dA. when z &z~. An exponential relation between
affine parameter and advanced time is why the
linear homogeneous solution of Eq. (21) is con-
sistent with the exponential homogeneous solu-
tion of Eq. (16). With the help of Eq. (14), Eq.
(21) becomes an equation for dA/dv which in the
limit Ir/2m —1!«1 ha.s the solution

dA. /dv =C exp[ j (dv'/4M)]. (23)

Now that the quasistationary nature of the hor-
izon in the presence of back reaction has been
confirmed, it is straightforward to check that the
effective surface gravity of the black hole, which
translates into the temperature of the Hawking
radiation as measured by an observer at radius x,
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