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Solvable Models with Self-Triality in Statistical Mechanics and Field Theory

R. Shankar
Josiah ~illa' Gibbs Laboratory, Yale University, Ne'er Haven, Connecticut 06520

(Received 20 November 1980)

The notion of self-duality is extended to self-triality. One example from spin systems
is given and completely solved by use of fermion variables. It is then shown that the O(8)
Gross-Neveu model has self-triality: The Lagrangian&(g) =~(R) =~(L ), where g is the
original fermion while 8 and I are two types of kinks that occur dynamically. The ana-
tomy of self-duality (triality) in the Ising and present examples is exposed as is the ori-
gin of the fermionic solutions.

PACS numbers: 05.50.+ q, 64.60.Cn

Let us begin by recalling a model with self-
duality, the quantum Ising model in one dimen-
sion" ..

1 I 1H = —,ago—,o, ' —,bgo„—

n

p, (n) = II o, (m) =- (IIo,)o, (n), (2)

p, (n) = o,o,',
one finds

where a and b are parameters, g,. and a,.' are
Pauli matrices at sites n and m+1, respectively.
If one introduces the dual variables' '

O(8) Gross-Neveu model in which the original
fermion g generates two types'of kinks 8 and L.
l show that Z(g) =Z(R) =S(L), 2 being the La-
grangian. Since Z is invariant, we are at the
self-triality point (a =b =c). The spin problem is
completely solved and seems related to Baxter's
three-color problem. The O(8) model has al-
ready been solved at the S-matrix level. '

Finally I show how to construct a class of mod-
els with self-duality (triality) and how from the
very construction we see the existence of a fer-
mionic solution and the relevant fermionic vari-
ables.

The spin system. The Hami—ltonian is

H ——2ag gy abggg 93' (4)
1 1 1H = —2' y, —2bgy, —2cgy34y»',

where p, (n) = p. ,(n —1). Since g and o are iso-
morphic, H has self-duality and H (a, b) =H (b, a).
Not only does the exchange a- b or y =b/a- 1/y
facilitate computations, it has an interesting in-
terpretation as the change from order to disor-
der or kink variables. ' '

Here I illustrate self-triality through two ex-
amples. One is a spin problem where H(a, b, c)
goes intoH(b, c,a) orH(c, a, b) upon changing to
either of theo dual variables. The other is the

where y,. are Hermitian O(4) Dirac matrices
obeying (y, ,y,.].=25, , and y;. =y&y are anti-Her-
mitian matrices with y;,.' = —1. [We may also
view them all as SU(4) -=0(6) generators. ] Chang-
ing to either

l
P 2 ='Ys~ 9 s ='Ysg'Y12 ~

rt 1
= (IIiy g)iy =— II [iy,4(m)]iy (n),

p34 = (IIyx4)y]4~
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or which obey the standard Majorana algebra

&2 =r s4wu~

x» =y,4II(iy, )=-y, (n) II [iy, (m)],
m=n+ 1

(g, (m), g,.(n)}= &,, &

In terms of these7)

(10)

which are isomorphic to the y's we obtain

H(a, b, c,y) =e(b, c,a;q) =a(c,a, b;x). (8)

y, = (1/~2, II(iy„),

4.= (1/W2iy. .II ('y,.),
~.= (1/W~iy. ,II (iy „),

We may, of course, set@= @.=~ in the above since
all variables are isomorphic.

To solve the model, I define three self-adjoint
fermion variables

H = -anil@' -brig, g +cbrit 0 '

= (2N+1) ' +[c&(k)e '""+c;t(k)e' "]
k

where

k =2nz/(2N+1), n=0, 1,2, . . . ,N.

One may check that

(c,(k), c,t(t)] =5„5„.

(12)

To diagonalize the quadratic form, I Fourier ex-
pand

q, (n)

H = Q (c t c t c~) ib

gQ -tge

-ia)
ice c

—Z i(k)ni'ni+ A2(k)n. 'n2+ 3(k)n3'ns
k=0

vrhere A, are roots of

A(A' —a' —b' —c')+2abc sink =0

and are given by

A, = [(a'+b'+ c')/3]'"2 cosg,

Ag, , = —2A, + [(a'+b'+c')/3]"'WSsine,

& = vm + v sin 'f sink,

f =abch(a'+b'+c')] "', 0~f ~ 1. (18)

!(due to the filled sea of x, states)

I'si n[-', m+ & sin '(f sink)]m 'dk. (19)

The physics of this model and the dependence on

a, 5, andy is reminiscent of Baxter's three-col-
or problem. ' The precise connection, if any,
will be discussed elsewhere.

The 0(8) Gross Neueu mod-e/. —The Lagrangian

density is

TIi«oots add up to zero at each k.—Note that
h(a +b +c )] " sets the overall scale and that
the single variable f controls the rest.
units, A, rises from 0 at k = 0 to a value less
than 1 at k =m/2 and drops to zero at k = m, while

A, starts at v 3, dips down to a value above 1 at
m/2, and rises back to KS at k = m and A, = —(A,
+A,). The curvature grows with f and at f = 1
the two branches meet at k = p/2 with discontinu-
ous slopes. This in turn leads to a singularity of
the form (1 f') "' in d'-e, /df ', where e, is the
ground-state energy per site, in the natural units

2 = —,g (,. i$(, +g,(g (,p, )', . . (2o)

where g, &0 and g,. is an 0(8) isovector and Ma-

jorana spinor in 1+ 1 dimensions. Here is an
overview. The discrete g-y'P symmetry gets
spontaneously broken and the vacuum has (TtI()

=+ 4M, where M is a dynamically generated mass
set equal to unity hereafter. There are then
kinks connecting positive ((g() & 0) and negative

((T|I() &0) vacua. They come in two isomultiplets
of eight each, R and I.. It is possible to rewrite
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g(g) in terms of R or L operators and one finds
S(g) =$(R) =S(L). Since 2 is invariant we are
at the point of self-triality.

To establish these claims I turn to the bosonic
version of the model which serves as the meet-
ing ground with the other two dual versions. I
pair the eight Majorana fields into four Dirac
fields C„.. . , 4, and bosonize the latter. For ex-~

ample, for e, = (g, + iy, )/v'2,

@,it(+, = &tI',i$(, + 2g,it(g, = —,(~„y,)',

~"=+a "+ ='~Pa "4. (-.r"0,)
=~ '"~&'~„q„

1 1 (A'1+tf 2)2 — .'Cos[(4p) p&]:.

The bosonized Lagrangian reads

(21a)

(2 lb)

(21c)

2 = —,
' g (s„p,)'+g, Q g(:cos[(4v)"'y, ]::cos[(4w)'"p,.]:j.

)= 1 j=1
(22)

For further details on this transformation see
Witten' and Shanker. '

Examining the potential energy term, we see
that the positive vacua correspond to y;/Km =n„
n; =0,+ 1,+ 2, . . . , and the negative vacua to qr, /
v'm=n;+-,'. If y-0 as x- —~ is assumed, there
are solitons that interpolate, as x- ~, to one of
the eight positive vacua or one of the sixteen neg-
ative vacua nearest to y =0. The former are just
the four 4, and their antiparticles, the latter are
the isospinor kinks which are classified R or L
accordingly as the number of coordinates in y/v~m

(+ 2, + —„+—„+—,) is even or odd. To understand
these multiplet assignments, one must integrate
Eq. (21b) over x to get

(28)p '~'[y, (~) —y, (-~)]=j J,'dx=H„

where H, are the com. muting O(8) generators of
rotations in the 1-2, 3-4, 5-6, and 7-8 planes.
Thus, cp, (~)/v"n are the O(8) weights. Note that
only the isospinors disorder (Tt1$) and deserve to
be called kinks from the point of view of 8(().

Now O(8) is special' in that besides the weights
of the vector representation, the R and L weights
each defines an oythonoxmal set of basis vectors.
Switching to the basis generated by R and calling

g,. the coordinate measured along these direc-
tions, we see that R now has integral coordinates
in q,./vm while g and L have half-integral coordi-
nates. Thus y-rl exchanges ( and R. To see
how the R's interact, we rewrite 8 in terms of g
and find'S(y) =$(rt) I In other words, if we fer-
mionize S(q) we will get a Gross-Neveu model in

R with ag, (RR)' interaction term. Likewise we
can show that R(L) =Z (() also. Since 2 is invari
appal under the triality transformation, we are at
the self-triality point. We are yet to find that
more general three-parameter theory with self-
triality which yields the present model at the
self-triality point.

The construction of models with self duality-
(triality) and their ferrnionic solutions. —Recall

how the horribly nonlocal change of variables (
-R is effected by a simple local coordinate trans-
formation in the bosonized versions of L(g) and

L(R). I believe that all self-dual Hamiltonians
will have an intermediate version in which the
duality transformation is trivial. Conversely,
self-dual models can be built by starting with the
intermediate version and working backwards,
which was how the spin problem discussed here
was arrived at. To sharpen these ideas, let us
note that the Ising Hamiltonian can be written in
a mixed basis as

H= ——2ap p, —25 g o»— (24)
dUcl1
sites

sites

H = —ag ig, tt, ' —bg ig,g, . (26)

Solving this quadratic form, one obtains the fa-
miliar result of Schultz, Mattis, and Lieb. '

For the self-triality model discussed here,
imagine a lattice of y, 's and two dual lattices dis-
placed to the left (right) by a third of a lattice
unit and carrying X, (p, ) variables. Demand that
ea.ch variable anticommute with its nearest dual

with the requirement that p, ,'=o,'= 1 and that
each p, , or cr, anticommute with its nearest dual
neighbors and commute with all else. Given this
symmetric definition, the self-duality of II is ob-
vious and corresponds to p, —0,. Traditionally
one satisfies the above-mentioned algebra by
choosing p, as o,o,' and p, ,=go, [which not only
makes p, isomorphic to o, it also ensures p, (a)
= o(p)] and then works with either H(o„o,) or
H(p„p, ). But there exists a way of directly con-
fronting H(o» p, ). Introduce two self-adjoint fer-
mion variables g, and g, obeying

(q, (m), y, (n)) =6,,6.„.
Clearly choice of o, =2ig,(, and p, =2ig,g, ' does
the job and we get
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variables and commute with all else. Then

H = —2g (ay, +bg, +cX,) (27)

has self-triality. One then satisfies the anticom-
mutation algebra either with p, ,=y, and ~2 =y3&y~2'
and deals withH(y) or one sets y, =2i(,g» p,
= 2'Egg/3, and X2 = 2A/)2(g' and gets the qlladratlc
form H(g)." But note that in all these cases the
existence of a fermion solution to the algebra is
of no use unless we also have a solution in terms
of a or y matrices, for the free Fermi theory is
interesting only because it maps onto a spin prob-
lem.

Since completing this analysis, I have become
aware of the work of Srednicki, Fradkin, and
Suskind, "which also arrives at some of the no-
tions I discussed towards the end of this work on
the role of fermion variables in spin systems.

A longer paper discussing many more issues
is in preparation.
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Note added. —I have been informed by Profes-
sor E. I ieb of related work by Bashilov and
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Black Holes Do Evaporate Thermally

James M. Bardeen
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A careful consideration of the propagation of null geodesics in a black-hole geometry
modified by Hawking-radiation back reaction shows that the event horizon is stable and
shifted only very slightly in radius from what is expected in a vacuum background, con-
trary to a recent claim in the literature.

PACS numbers: 04.20.Cv, 95.30.Sf, 97.60.Lf

The original derivation of the Hawking radiation
from black holes" assumed that the black hole is
static or stationary for the purpose of calculating
the rate and properties of the radiation. Overall
energy conservation requires that the quantum
fluctuations in the vicinity of the event horizon
responsible for the radiation produce an energy-
momentum tensor whose expectation value corre-
sponds to a negative energy flux into the black
hole. Several attempts" ' have been made at a

direct calculation of the effective energy-momen-
tum tensor, which in the absence of a manageable
quantum theory of gravity can be used in a semi-
classical approximation to find the evolution of
the black hole. The geometry, through the classi-
cal Einstein equations, and therefore the propaga-
tion of null geodesics is modified from that ex-
pected in a vacuum black-hole metric.

Tipler' recently considered this back reaction
for spherically symmetric black holes and con-
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