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results for S(q) in Figs. 2 and 3 show how the
power-law behavior grows out of the characteris-
tic diffraction pattern of a finite lattice. The pic-
ture which emerges is quite different from that
of a single Bragg peak of width I /L combined with
a power-law singularity, such as suggested by
previous workers. "

The most important implication of our results
is that one can expect to see the Landau-Peierls
power-law behavior characteristic of the infinite
lattice S(q) as soon as one is dealing with crys-
tallites of size L-5000 A. This seems especially
significant in view of the recent report' of crys-
tallites of just such a size in a new form of ex-
foliated graphite.
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Scales and Scaling in the Kondo Model
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The thermodynamics of the Kondo model are formulated in terms of coupled integral
equations and various properties, in particular the scaling property, are deduced. Then,
with definition of the various scales parametrizing various asymptotic regions of the
H-T plane, universal numbers are calculated and, in particular, Wilson's result is ob-
tained analytic ally.

PACS numbers: 75.20.Hr

Recently it was shown' that the Kondo Hamil-
tonian' can be exactly diagonalized with use of
Bethe-gygsgtz techniques. It is our purpose in

this note to extend the formulation to nonzero

temperatures, showing how the phenomenon of
scaling arises in the model. Then, by means of
explicit perturbative and nonperturbative calcula-
tions, we shall determine the dimensional scales
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which parametrize the thermodynamic quantities
in three asymptotic domains. The ratios of these
scales are pure numbers which should be inde-
pendent of cutoff procedure or definition of unre-
normalized coupling constant. Hence it will be
instructive to compare our results with those ob-
tained by Wilson' with use of very different meth-
ods.
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where D =N'//L is the electron density, n, are in-

—=E +E +P'+E',

where 6(x)=-2tan '(x/c), —v ~6&m; c=2J(l
ur first task is to obtain a set of equations —~ J') '; J is a coupling constant, and the f„are
ch determine the thermodynamics of a system integers (half-integers) when N —M is odd (even). '

N' electrons interacting with ¹ impurities' on The corresponding eigenstates have spin S= —,(N
ne segment of length L. It was shown in Ref. 1 —2M) and

~ S,~-S.
the energy eigenvalues are given (dropping Equation (2) has the same structure as the one

e constants) by obtained in the solution of the Heisenberg model
by Bethe-Ansatz techniques. ' This equation was
used there following a method devised by Yang
and Yang' to construct a set of integral equations
which determine the thermodynamics. Following
the identical steps, we find

E=E,+E'- (T/2c) fdAN' sech[m(A —1)/c]in[1+ g, (A)] —(T/2c) fdA N'se ch(m A/ c)in[1+ q, (A)]

where E, is the ground-state energy and &" is the free energy of a gas of noninteracting bosons, de-
scribing density excitations associated with the quantum numbers n, The function g, is the first mem-
ber of a set of functions g„satisfying

lnq, = —2DT 'tan '(exp[@(A-1)/c])+Gin(1+ rj,),

lng„=Gin(1+ q„,) +Gl n(1+ rl„+,), n&1,

subject to the boundary condition

[n] ln(l + q„„)—[n+ 1]ln(1+ q„)
" "= 2H/T,

(4)

(5)

(6)

where [n] and G are integral operators with kernels w '(nc/2)[(nc/2)'+ A'] ' and (2c) ' sech(wA/c), re
spectively. '

Many properties of the model may be deduced without an explicit solution of the equations. The most
important one is the scaling property' (dimensional transmutation): In the scaling regime T «D, a
scale is dynamically generated which completely characterizes the physics. In other words, there is
no explicit dependence on D or J' except through the combination T, =D exp(-n/c).

To see this we note that as a consequence of (4), q, goes to zero for large A proportionally to exp(- 2

XDT 'tan 'z), where z= exp[m(A —1)/c)]. Thus, if z does not satisfy s«l, then g, is of order exp(-2
x D/T) and contributes negligibly to the integrals in Eqs. (3) and (5). Hence for T«D we may replace
tan z by z and, rewriting the equations as functions of a new variable &= mA/c+ln(T, /T), we have

lng, = —2e~+Gln(1+ q, ); lnri„= Gln(1+ q„+,)+Gin(l+ q„,), n&1;

and

E'=N'(T/2m) fdrsech[& —ln(T, /T)]in[1+ q, (&, H/T)]; (6)

so that F'=-N' Tf '(T/T„H/T) is a universal function. '
Consider now the low-temperature region T&+ Tp As the integrand is sufficiently damped at large f

we may expand the sech and find

E'= —N' T'(mTo) ' fdfe~ in[1+ q,(f, H/T)].

Since g, is a smooth function of H/T, the expression exhibits the Kondo effect, namely, that as the
temperature is lowered, the impurity susceptibility y,-=- p [6 E /SH']„o remains finite, indicating a
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transition to a singlet ground state.
At the other end of the temperature scale, T» T, (but still T«D), only that portion of the f axis with

f large and negative contributes appreciably to I . From this fact one can construct a high-tempera-
ture expansion of the free energy and susceptibility. In particular, we find (details will be published
elsewhere)

y'=N'T 'p. '(I —[ln(T/To)) ' —2[in(T/T, }]'lnln(T/T, )+0([ln(T/T, )] ')].
This result clarifies the connection between

our definition of the cutoff' and the conventional
scheme. " The high-temperature region is acces-
sible by perturbation theory and the known result
is

y'=N'T 'p, '[I -2g/m+O(g')],

where g is the coupling constant defined conven-
tionally, with momentum cutoff X), while by ex-
panding Eq. (9}to second order in 4 we have

Xs ~t T &~2 1 + ln + J2

Obviously the two cutoff schemes lead to a non-
analytic relation between the corresponding coup-
ling constants

2g 2J 1 2j 2 2J
ln —+ ~ ~ ~

7r 7r 2 7r w

This nonanalyticity is the origin of the nonuni-
versality of the second term in the P function and

! accounts for our expression for the scale, T,
=D exp(- m/c), as compared with the conventional
expression, X) exp(- w/2g+ —,lng+. ~ )." Indeed,
our cutoff procedure differs from the conventional
one in that it allows discontinuities in the basis
wave functions. Still, we expect that in the scal-
ing region cutoff effects can be neglected. Differ-
ent constructions of the model may lead to differ-
ent dependence of T, on the bare parameters; the
dependence of physical quantities on T, is, how-
ever, universal. Our calculations in this model
(see below) and in related models" provide ample
evidence in support of this assertion, though a
complete proof of equivalence is still lacking.

We turn now to the discussion of various scales
that characterize the behavior of the magnetiza-
tion gg' in the asymptotic regions (I) T =0, H

«T„(II) T=O, H» T;, and (III) T» T„H«T,.
We denote them by T„Tz, and T„(the Kondo
temperature, by convention}, respectively. To
be precise

II'(I) ™Pm'H/T, ;

II'(ll) - p(1 —2 [ln(H/T„)] ' - 4 [ln(H/T„)] ' ln ln(H/T„) + 0([ln(H/T~)] ~) j;
II'(III)- p(H/T)(l —[ln(T/T„)] ' —2 [in(T/TK)] 'lnln(T/TK)+0([ln(T/TK)] ')}.

The expression for gg'(III) corresponds to Eq. (9) above; the other two will be deduced below.
As renormalized quantities, the dimensional scales T„T~, TK are..not individually calculable. How-

ever, their ratios are universal numbers independent of how the ultraviolet cutoff ancf unrenormalized
coupling constant are defined in a particular construction of the model. One of the ratios, T„/T„, may
be calculated in perturbation theory, whose domain of validity includes regions (II) and (III). Either of
the other ratios, however, relates quantities measured far below and far above the Kondo temperature
and hence requires a nonperturbative treatment of the crossover. In his classic paper' Wilson applies
renormalization-group techniques and a good deal of computer work to bridge the gap. Our formalism
allows a much simpler approach: The formulation of the zero-temperature magnetization equation in
Ref. 1 allows one to compute explicitly the magnetization for all values of H and thus obtain the ratio
T„/T, . Combining it with TK/Tz then allows comparison with Wilson's value for W=TK/T, .

The ratio T „/T„ is computed by evaluating the free energy to second order in perturbation theory.
One finds

I' H H H
T T
—= —ln 2 cosh — + [H-independent terms (H. I.T.)] + ~ —tanh—

7rT T

——
2 sech —+

~' IH', H ( exp(H/T) ( H 2H ~ . 2H1+in +Ei —— . +H -H) +Q(g ),2 T T (2 cosh(JI/T) I T T 2H T
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where

p (t ) = f 'dx (1-x) exp (- 2xt) [m' csc'(mx ) -x ' —(1-x) '],
and Ei is the exponential-integral function. Asymptotically,

F' - -P + (H.I.T.) + gH/p + 2P (g/w)' ln (e5)/2P) + 0 (g'), T/H - 0;
F'--H /2T+(H. I.T.)+gH /mT+2(P /T)(g/n) ln(pre ~ &/T)+O(g ), H/T-0;

where

InP =
f dx(1-x)'x(m'csc'mx -x ')

and lny is Euler's constant. Thus

TK/Te=2Pre "'
We proceed now to calculate T„/T,. The method was outlined and used in Ref. 1. It was shown that

the lowest-energy state at T =0 and H c 0 is characterized by having only real A's with a density func-
tion 0 computed from the equation

o{A) + f "K(A -A )o(A )dA =f (A), (10)

where

K(x) =cv (c +x ), f (x) =2cm ' {N [c +4(x —1) ] '+N (c +4x ) ].
The constant B is determined by the field B and describes the response of the ground state to the ap-
plied field.

Written in terms of p(A) =v(A+B), Eq. (10) is of the Wiener-Hopf type" and the method of solution
was given by Yang and Yang. " One factorizes the Fourier-transformed kernel,

1+K(p) =2 exp(- z'c~ p~ ) cosh(zcp) =K, (cp/2m)/K {cp/2m),

K, (q) = K (-q) '=(2~)"'ex'-i [q1 i+~/ 2—In(-q+iO)]]/I'(-, +iq),

to transform Eq. (10) into the following equation for the Fourier transforms of p, (A) =8(+A)p(A):

K (cp/2m)p (p)+K, (cp/2m)p, (p) =K (cp/2m) f (p) exp(ipB) = K, (cp/2m)g(p) exp(ipB),

where

% = p fe v(A) dA = p p (0) = p, [N —2p, (0)]=Sit'+m',

where" (again we consider only H «D)
' = p(2/we)"'LT, exp(nB/c), B«1;

g(A) = (2c) '{N' sech[p(A —1)/c]+N' sech(mA/c)).

Laplace transforming f (A) and g(A), one can solve Eq. (10) to obtain p, (p), and hence the magnetiza-
tion

I
N'gr "'P(-1)"(kl) '(k+-,')~ "'exp[- (k+-, )][exp(mB/c)]'"", B~ 0

0=0

I N'p{1 —~ '"f "dtt 'sin(~t)exp(-2wBt/c)exp[- t(lnt —1)]1'(t+—,')), 0- B~«1.

Setting N' =0, we have a free-electron system so that

gg'=pLH/m=p, (2/ze)'~'e' "LT„

(12)

which allows us to identify e' "=(e/2z)"'H/T, . Note that the condition B«1 is equivalent to H«D and
that we again have a scaling phenomenon, namely the impurity magnetization II depends only on H/T, .

In the limit H-0 we find SR —pN H/~T„consistent with our definition of T„while for H»T, (still
H «D) we find

glT'= pN'(1 ——,'[ln(P/T„)] ' ——,'[ln(H/T„)j Inln{P/TH)+O([ln(P/T„)] ')),
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where

THIT. = (~/e)'".

Note that again if we expand the result in the
coupling constant we find the same nonanalytic
relation between J and the conventionally defined
coupling constant g.

Now from the two universal numbers T K/Ts
and T„/T, we may deduce a third one:

K K H 2 1/2 ~ 9/4-T=T T=
0 H

which appears in the famous relation'

and we find, substituting the values in@ =0.577216
and lnP = 0.662 122, that W/4m = 0.102 676 in agree-
ment with Wilson's numerical answer W/4n
= 0.1032+ 0.0005.
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Hall measurements of electron inversion layers at Iow temperatures and electric
fields are reported. For resistances of =- 10 kA/ a logarithmic dependence of the
Hall coefficient on temperature and Hall voltage is observed. This indicates that the
logarithmic dependences observed for the resistance of metal films and metal-oxide-
semiconductor field-effect transistors are not evidence for the scaling theory of locali-
zation. These results are also difficult to resolve within the theory of interaction ef-
fects by Altshuler, Aronov, and Lee.

PACS numbers: 73.40.Qv, 73.25.Ti

Several experiments have recently observed
logarithmic dependences of the resistivity on tem-
perature and electric field which scale with sheet
resistance Rp for two-dimensional (2D) systems
at low temperatures. " In addition, for silicon
inversion layers, Kawaguchi and Kawaji have re-

ported a negative magnetoresistance. ' Although
these observations qualitatively agree with the
basic predictions of the scaling theory of local-
ization by Abrahams, Anderson, Licciardello,
and Ramakrishnan (AALR)' there is now an al-
ternative theory by Altshuler, Aronov, and Lee

1981 The American Physical Society


