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Lower Limit on Neutral-Heavy-Muon Mass
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Analysis of 122965 dimuon final states produced by 209-GeV muons in a magnetized
iron calorimeter has set a lower limit on the mass of a neutral heavy muon (&~ ). If the

is coupled with Fermi strength to a right-handed charged current and decays to pp, v

with a 10/o branching ratio, its mass exceeds 9 Gev/c .

PACS numbers: 14.60.Ef, 13.60.Hb

We report a limit on the muoproduction of a
neutral and a doubly charged heavy muon (M' and
M+') based on the analysis of 76 350 opposite-
sign and 46 615 same-sign dimuon final states
produced by 1.4 ~ 10"positive and 2.9~ 10"nega-
tive 209-GeV muons in the Berkeley-Fermilab-
Princeton multimuon spectrometer at Fermilab.

The muon beam was incident on a solid-steel
dipole magnet composed of (91) 10-cm-thick steel
plates interleaved with scintillation counters and
wire chambers. The steel served as target, had-
ron calorimeter, muon identifier, and momen-
tum-analyzing spectrometer. The apparatus,
trigger, and reconstruction algorithms have been
described elsewhere. " The analyzed data are
sensitive to M' and M' production in the mass
range 1&m„&14 GeV/c'.

Considerable speculation has been devoted to
the possible existence of heavy neutral gauge lep-

tons. Variations of the standard SU(2) 8 U(1) mod-
el' have been proposed which include' M"s.
Grand unification schemes frequently introduce
M"s, e.g. , those' which embed [SU(2)]&8[U(l)]„
in [SU(3)]~ 8 [SU(3)]„. In addition to the M',
heavy doubly char-ged gauge muons (M") have
been proposed in the context of an extended SU(2)
8 U(1) theory in doublets with the known singly
charged leptons. '

There exist few experimental limits on the
masses of heavy muons. Studies of & and K de-
cay' exclude the M' mass from the range m „
&m&0&m~. A bubble chamber study of v&-N in-
teractions' sets a 90/o-confidence-level lower
limit of 1.8 GeV/c' on the mass of the heavy
muon M . Although there are 90%-confidence
lower limits on the M' mass of 2.4 GeV/c' from
v, -N scattering' and 8.4 GeV/c' from v&-Fe inter-
actions, ' there is no further experimental con-
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straint on the M' mass.
Possible evidence for M' production has arisen

from three experiments. Two p e' events pro-
duced by v„-N interactions below 30 GeV in the
SKAT bubble chamber" were attributed" to the
production of an M' with 1.4&m„o& 2.4 GeV/c'.
However, no corroborating evidence for the M'
has resulted from further study" of v and v in-
duced pe pairs. In a cosmic-ray experiment"
deep underground, five events were interpreted
to be either the production of a lepton with mass
2-4 GeV/c' or the cascade" of a new charged
heavy lepton to an M'. However, two subsequent
searches" found no such events. Originally the
observation of neutrino-induced trimuon events
at Fermilab" prompted their interpretation" as
examples of M' production. Further experiments
and analyses found this phenomenon to be com-
patible with conventional processes: Heavy-lep-
ton production could account for no more than
10%%uo-20% of these events. "

%e have calculated the expected rates for M'
and M" production in this experiment, assuming
the incident muon to be coupled with Fermi
strength to the M by means of a right-handed
weak current. The right-handed coupling, pres-
ent in most models containing a heavy gauge lep-
ton, is compatible with our experimental condi-
tions because of the ~ 80% left-handed polariza-
tion of the p' beam. " In the limit of negligible
muon mass, invariance to weak isospin rotation
gives cr[p (LH)N-v„y] =a(v„N- p y), where LH
refers to the left-handed muon helicity and N is
an average of proton and neutron. Also, for neg-
ligible M' mass, o'[p (LH)N -M'g] = (gz, /g)'
«[p (LH)N- v„y], where gL, '/g' is the ratio of
left-handed coupling strengths for M' and v„.
Finally, v[p'(LH)N-M'y1 = (g ~/pi )'o'[P (LH)N
-M'y], where g~'/gz' is the ratio of abnormal-
helicity to normal-helicity weak-coupling
strengths" for the M'. For a right-handed cur-
rent of Fermi strength this ratio is unity. Ex-
cept for effects of finite lepton mass, these equa-
tions combine to give cr[p'(LH)N-M'y] = (g~/g)'
xo(v„N py). -

By using the simplest parton model with single
W+ exchange, " invoking the Callan-Gross rela-
tion, "and considering only &S =AC =0 processes
and isoscalar targets,

d o'[P (LH)N Mop] g&
' G2Eyg„F (x)

EL7v dX g lTy

where v =xy =Q'/s, 1-y is the fraction of the
laboratory muon energy E retained by the M',
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and E,(x) =18vW, ~"(x)/5. We parametrize vW, &~

as in Ref. 23 and set" vW, & =(1-0.4x)vW, &'

The differential cross section is independent of
M' mass, except for kinematic restriction of the
allowed area of the Q'-v plane.

The differential decay rate for M'- p p v»
where the M' is coupled to the p' by a V+A. cur-
rent, is

d51 (lirto p+p p„ x„(1-x„)(1-a cose „).dx dx, dp, d cos8, dp

In the M' rest frame x (x „) is 2p/m „o for the

p (v„), 8„, and p„define the v& direction rela-
tive to the M' direction, 0 and p def ine the p
direction relative to the v„direction, and h is the
M' helicity. Since the M' carries the left-handed
polarization of the incident p, the two muons
are emitted preferentially forward and together
carry an average of 80/o of theM' energy in the
laborator y.

Monte Carlo events have been generated accord-
ing to the above formulas at lepton masses of 1,
2, 3, 6, 9, 12, and 14 GeV/c'. Our simulation
of the apparatus has been well tested in the analy-
sis of Z/g' and charmed-meson' production. Sim-
ulated M' and M+' events at each mass are binned
in +Q' and in p&, the daughter muon momentum
transverse to Q. For this analysis, Q' is defined
by taking the highest-energy beam-sign final-
state muon to be a scattered beam muon. The M'
(M") Monte Carlo events are compared to data
events containing exactly two opposite- (same-)
sign reconstructed final-state muons.

Kinematic cuts were chosen individually for
each heavy-lepton type and mass in order to ex-
clude data while retaining Monte Carlo M' events.
Primarily, these cuts demand a particular range
of dimuon invariant mass. " In addition, for m„o
&3, &2, or &3 GeV/c', respectively, the cuts re-
quire a 9 GeV minimum outgoing muon energy,
a —5 GeV minimum missing energy, or a 60 GeV
minimum v. The cuts suppress the prinicpal back-
grounds of charm production and & and K decay.
An empirical contour then was drawn for each
+Q'-p~ plot in order to contain all the data events
on the low-p&, low-(/Q') side. The same contour
was drawn on the corresponding plot for simulat-
ed M' events. (If the same contour" and cuts,
except for the dimuon mass cut, were used for
all masses, the limits presented below would
rise by a factor of 1.6 on the average. ) Figure 1
shows the plots and contour for data and Monte
Carlo corresponding to 6-GeV/c' M' production.
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FIG. 2. Experimental upper limits and calculated
cross-section-branching-ratio products &B for heavy-
muon (Mo and M++) production by 209-GeV muons,
plotted vs heavy muon mass. The calculation assumes
B(M pp, v) = 0.1 (Mo) or 0.2 (M++), and right-handed
coupling of p+ to M with Fermi strength (gs = g~).
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FIG. 1. Two-dimensional event distributions vs ~Q '
and P&, defined in the text. The vertical scale is
logarithmic; bin populations range from 0 to 450. Dis-
tribution (a) shows the data and an empirically chosen
contour within which these events are contained. Dis-
tribution (b) is 77.4 times the simulated population
from production and decay of a 6-GeV/c' Mo, with
the assumptions described in the text. The 3.5 events
in (b) lying outside the contour in (a) give the quoted
&B limit at this mass.

the producti. on of anM' or M'+ coupled with Fer-
mi strength to a right-handed current in the mass
range l &m„&9 GeV/c'. Without a special mecha-
nism to suppress pair production, doubly charged
leptons in this mass range would have been de-
tected at PETRA. No comparable limits on M
production in this range are available from any
other experiment.
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The 3.5 Monte Carlo events on the high-P J., high-
(4Q') side of the contour then provide the cross
section limit at this mass.

Figure 2 displays the mass-dependent limits on
the product of cross section and p pv branching
ratio (vB) for M' and M'+ production. Also indi-
cated are the calculated crB for the production of
M"s and M' 's, where the branching ratio is as-
sumed to be 0.1 and 0.2 for M' and M", respec-
tively. At 90% confidence level, the data exclude
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Glueball Spectrum in Extended Quantum Chromodynamics
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Extended quantum chromodynamics in which the magnetic structure of the color gauge
symmetry plays the important role in the dynamics is proposed as a phenomenological
theory of the strong interaction. In the one-loop approximation the masses of the scalar
and the axial-vector magnetic glueballs are estimated to be around 2.2 and 1.5 GeV,
and the leading linear trajectory of the 2++ electric glueball is estimated to be &„(s)
= 0.48s(GeV ) + 1.01. The trajectory is proposed as the Pomeron.

PACS numbers: 14.80.Kx, 12.40.Cc

One of the most challenging problems in con-
temporary physics is to clarify the physical
meaning of quantum chromodynamics (QCD), in
particular to obtain the physical spectrum of the
theory. To resolve this problem we have recent-
ly constructed the extended gauge theory, or the
gauge theory in the large, ' in which the magnetic

structure of the underlying gauge symmetry plays
the important role in the dynamics. Based on the
group SU(2), the extended theory has been shown
to exhibit a manifest confinement of the color.
More importantly the theory could tell us how to
construct the physical states, in particular the
glueball states, and to calculate its mass spec-
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