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Thermal Phase Transition of the Dilute s -State Potts and n-Vector Models
at the Percolation Threshold

Antonio Coniglio®’
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(Received 22 August 1980)~

A general theory is given for the quenched dilute s-state Potts and n~vector models in
any dimension d. It is shown that for T — 0 at the percolation threshold the Potts thermal
exponent vp equals the percolation exponent v,, implying a crossover exponent ¢ =1, for
any s and d. For the n-vector model (¢ >1), vr=v,/tg, where §g is a resistivity critical
exponent. Agreement with recent experiments for two-dimensional dilute Ising and

Heisenberg systems is excellent.

PACS numbers: 64.60.Kw, 75.10.Hk

Dilute ferromagnets have received much atten-
tion recently, both experimentally’:2 and theoret-
ically,®” because their comprehension is impor-
tant for the general understanding of many other
disordered systems. To illustrate the phenomena
involved, consider an Ising model in which ferro-
magnetic bonds are randomly distributed with
concentration p. If all the bonds are present (p
=1), the pure Ising model is recovered. As p de-
creases, the average ferromagnetic interaction
also decreases. As a consequence the critical
temperature decreases and approaches zero at
the percolation threshold p .. Below this value,
only finite clusters of ferromagnetic bonds are
present, and therefore no ferromagnetic order is
possible. The special point @(p=p,,T=0) is
very intriguing as both connectivity and thermal
fluctuations become critical.?"® As this point is
approached along the path p —p_at T=0, no ther-
mal fluctuations are present and the critical be-
havior is characterized by percolation exponents.
Much less is known when @ is approached along
the path T'—-0 with p=p,.

Let us briefly review the present theories®®
describing the thermal phase transition along this
path. At p, the system can be viewed as an Ising
model defined on a typical incipient infinite clust-
er (IIC). This is the infinite cluster at p. which
occupies a zero fraction of the lattice. Stanley
etal.* and Lubensky® argue that magnetic corre-
lations spread through the IIC along an effective
one-dimensional (1D) path of g steps. If &, is
the end-to-end distance of the IIC,® a new expo-
nent v, can be defined through g"7~¢,. If, at
some temperature 7, the Ising correlation length
£,(T) satisfies £,(7)~¢,, then g ~e??/*T, since
this is the behavior of the correlation length of a
1D Ising system. Thus

E(T)~(e™29/*7) "7, (1)

Consequently v, defines the divergence of the Is-
ing correlation length along the path 7'—0 with
p=p.. Since ¢,~|p-p,| "?, one also has ¢
~|p=p.|"#/71. Since the critical behavior along
the path p —p_. at T=0 is given by the percolation
exponent v,, one finds the crossover exponent
¢ =v, /v, with application of scaling.®* Lubensky®
argues that v <v, <1, where v, is the self-avoid-
ing-walk (SAW) exponent, while Stanley etal.*
make the Ansatz v,=v . Intwo dimensions, with
use of v,<1 and® v,=1.33, it follows that ¢>1,
while the SAW Ansatz predicts more precisely
that ¢ =1.8. Neither of these results agree with
the € expansion,® or with the experimental data?
on dilute Ising systems, which both give ¢ =1.
The result ¢ =1 is quite puzzling, because in two
dimensions where v,>1 it implies that the length
£ is smaller than the direct end-to-end distance,
contrary to the intuitive idea from theory.*® The
above theories were assumed to be valid also for
the dilute n-vector model. The most recent ex-
perimental data of Birgeneau etal.! for a 2D
Heisenberg system give ¢ =v,/v,=1.48 £0.15
(with use of v,=1.33), which does not agree well
with the value predicted by the SAW Ansaitz.

Although the theories described above are
largely heuristic, they provide a concrete picture
which can be used as starting point for further
developments. In this paper, I develop a general
theory which describes the properties of the s-
state Potts and n-vector models on the IIC. From
this theory, without any ad hoc conjectures, I
predict the critical exponents for both models and
find the predictions to agree with the available
exact results and experimental data. I also make
new predictions that can be tested experimenta"ﬂy
and/or numerically.

Let us first consider the dilute s-state Potts
model on a d-dimensional regular lattice. The
partition function for a given bond configuration
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can be written as

Z{Jij}: EeXp[BEJ”(SGOin—l)], (2)
{c} (ii)
where J;; are random variables which assume a
value J or 0 with probability p or ¢g=1-», and
0,=1, ..., s are the Potts variables. The sum
is over all nearest neighbors, and g=1/kT. The
free energy F is obtained by averaging an{J,- j}
over all the bond configurations. It is easy to
show (just as for the dilute Ising case) that the
free energy describes bond percolation for any s
in the limit 7'—~0 and therefore we expect a gen-
eral phase diagram of the form of Fig. 1.
Consider now the case s=1 for any value of 7.
It is possible to show,? if one starts from (2),
that lim__,F /(s — 1) describes bond percolation
on an already diluted lattice with bond probability
p,=1l-e ~J/kT  This is equivalent to a bond perco-
lation on a full lattice with an effective bond prob-
ability p given by p=pp,. Consequently, the criti-
cal curve is given by pp, =p_., with percolation
critical exponents all along this curve. In partic-
ular, as the @ point is approached along the path
T—-0with p=p_, the s=1 correlation length &
diverges as

£ =(p=1) "= (e T) S, 3

This implies that for the s=1 Potts model v, =v,.
I now show that this result is true for any s.
Consider the s-state Potts model defined on a

Q(p=p, T=0) P

FIG. 1. Schematic phase diagram for the dilute s-
state Potts model. s=1 is the dilute bond-percolation
problem, s=2 is the dilute Ising model, s=3 is the
dilute three-state Potts, etc. For large s, one expects
a line of first-order phase transitions ending at a
second-order phase transition that is characterized by
percolation exponents.

typical realization of the IIC. To solve this mod-
el we apply an exact renormalization procedure,
which maps this cluster into a single bond with
renormalized coupling constant J’ and rescaling
parameter £,, To show how to construct the re-
cursion relation, let us consider first the case
s=1, In this case the renormalized bond proba-
bility p,’=1-e~?/*7T is given by the probability of
getting across'! from one end to the other of the
cluster (Fig. 2). A simple calculation gives

/=0, b, ¥+ Np, ¥ g, + 0(q,%)], (4)

where L is the number of singly connected bonds
(shown as bold lines in Fig. 2), and N is the num-
ber of multiply connected bonds (shown as light
lines). 0O(q,?) are terms of higher order ing, =1
—p,. The term p,L*¥ corresponds to all the bonds
occupied and Np,L*¥"'g, corresponds to one multi-
ply connected bond missing. No matter which of
the N bonds is missing it will be always possible
to get across (see Fig. 2), hence the factor N.
The eigenvalue of (4) at 7=0 (p, =1) is given by
(dp,'/dp,) g o= L.

For the general s-state Potts model we deci-
mate'? all the internal sites of the IIC except the
two ends. Following the same line as before, we
find a scaling field given by e ~$?/*T with the same
eigenvalue L at T=0 [see the example in Fig. 2(b)
where L=2]and therefore the same exponent v,

FIG. 2. (a) Computer-generated incipient infinite
cluster for the bond percolation problem (from Ref. 8).
The backbone bonds are shown as full lines and the
“dangling ends” are shown as broken lines. For the
s-state Potts model only the backbone bonds that are
singly connected (shown as bold lines) contribute to the
effective 1D length L through which the thermal cor-
relation spreads. As an example, in (b) L =2. For the
n-vector model (z>1) the effective 1D length Ly is given
by the equivalent 1D resistance of the backbone. In
(b) L ;=3.
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as for s=1. Since for s=1, v,=v,, it follows
that v =v, for any s and d. Consequently the
crossover exponent ¢ =1 for any s and d.

As a by-product we also find v,=1n&,/InL, since
L is the eigenvalue and £, the rescaling parame-
ter. Because v,=v, we obtain L”=¢,, which re-
lates the percolation and the thermal exponent to
the geometrical properties of the IIC. Finally,
since &,~|p-p, |7, it follows that

L’“Ip —pcl-l‘ (5)

This relation is new in the context of percolation
theory and is amenable to direct computation.

The quantity L plays the role of an effective 1D
length along which thermal information is trans-
mitted. In fact the same renormalization group,
applied to a 1D length of L steps, gives the same
eigenvalue at 7=0 and therefore the same criti-
cal behavior near 7=0. Physically only the sing-
ly connected bonds contribute to L, because the
spins in the blobs of multiply connected bonds are
very strongly correlated at low temperatures,
and therefore do not offer any “resistance” to the
spread of thermal correlations. Note that L can
be smaller than &,, and therefore there is no in-
consistency in two dimensions where v,> 1.

Since ¢ =1, I expect percolation exponents also
for the susceptibility,” i.e. ¥,=%,. The experi-
mental data? for the dilute 2D Ising system (s =2)
are in excellent agreement with my predictions
(Table I). No other experimental data exist pres-
ently for d>2 and s> 2 to compare with these pre-
dictions. I hope that this theory will stimulate
further experiments.

For the n-vector model (z>1), application of
the same exact renormalization procedure near
T=0 yields a new effective 1D length L. Using

the steepest-descent method, one can prove (de-
tails will be given elsewhere) that this length is
obtained by constructing the equivalent 1D elec-
trical resistance along the backbone of the IIC.
To be more precise, if a unit electric resistance
7 is associated to each bond of backbone and R is
the total resistance of the backbone,'® then Ly
=R/7. As an example, in Fig. 2(b) Lz=3, as
easily follows from Kirchhoff’s laws.

Now the blobs do contribute to the effective
length. The physical reason for this is that the
spins in the blobs are not as strongly correlated,
as in the s-state Potts model, because of the low
energy excitations of the spin waves. Therefore
a different value of the exponent v, can be ob-
tained through Lg"7~¢,. Consequently L, ~|p
-p| “*R with ¢z=v,/v,. Following the same pro-
cedure adopted before, I find that the correlation
length £, diverges as &, ~(k7/J) "Tas T—0 and
the crossover exponent ¢ = {,=v,/v,, while” y,
=v,/¢. Using the available numerical data'* for
£r and the best estimates for the percolation ex-
ponents, %1516 T find the values of ¢, v,, and y,,
for d <6 (see Table I). The agreement with the
recently available experimental data of Birgeneau
etal.! in two dimensions is remarkably good. I
hope that experimental data in three dimensions
will eventually be available for comparison also.

In conclusion, I have given, I believe for the
first time, a complete unified theory for both the
quenched dilute s-state Potts and the n-vector
model. This theory is based on a renormalization
procedure that I have been able to perform exact-

ly near T=0. The available exact results and ex-
perimental data agree with the theory. I have
made new predictions which, I hope, will be test-
ed by experiments and numerical calculations.

TABLE I. Predicted exponents for the dilute s-state Potts and n-vector models for
T —0 with p=p.,. The error bars are no more than two units of the last decimal. The

experimental data are in parentheses.

s-gstate Potts model

n-vector model (z >1)

a Vrp YT ¢ vr Yr ¢
2 1.33 2.4 1 0.92 1.6 1.43
(1.32%0.04%) (2.4£0.1%) 12 0.91+0.1P) (1.5+0.15° (1.48+0.15P)
3 0.8 1.7 1 0.7, 1.5 1.12
4 0.7 1.5 1 0.64 1.4 1.05
5 0.6 1.2 1 0.5 1.2 1.02
6 0.5 1 1 0.5 1 1
aRef. 2.
PRef. 1.
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Discovery of a Neutral-to-Ionic Phase Transition in Organic Materials
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A systematic study of mixed stacked organic charge-transfer compounds shows that
these materials are either neutral or ionic and that they range from being near the
neutral-ionic boundary to being far away. Under pressure, several neutral compounds
near this boundary are found to undergo a reversible phase transition to an ionic ground
state. This is the first observation of a neutral-to~ionic transition in any kind of mater-

ial.

PACS numbers: 61.50.Lt, 72.80.Le

Organic charge-transfer solids are composed
of planar, aromatic donor (D) and acceptor (A)
molecules that tend to stack either in separate
donor and acceptor stacks or in mixed stacks
where donors and acceptors alternate along the
stack.! Interest in these materials has been fo-
cused on those exhibiting high conductivity, but
recently has expanded to cover other properties
and aspects of this large class of materials. In
this paper, we report the observation of new ef-
fects in insulating charge-transfer compounds
that have mixed stacks. These materials are
either neutral or ionic, but we find that under
pressure certain neutral compounds become ionic.

© 1981 The American Physical Society

This is the first observation of a neutral-to-ionic
transition in any kind of material. It is thus ap-
propriate to begin with a discussion on what fac-
tors makes one compound neutral and another
ionic.

In contrast to inorganic compounds, the over-
lap (transfer integral) between neighboring mole-
cules in an organic solid is small compared with
other energies involved and can be neglected. In
this case, the degree of charge transfer is de-
termined by the competition between two ener-
gies?: (I-A), the cost of ionizing a donor-accep-
tor (D-A) pair (7 is the ionization potential of the
donor and A is the acceptor electron affinity),
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