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flow is mainly carried by a small number of elec-
trons on the tail of the Maxwellian distribution.
As pointed out by Gray and Kilkenny, ' f, /f, ex-
ceeds unity at velocities for which the energy
flux is large when A/L is of the order 0.01, and
the linearized theory breaks down since f is then
negative. Figure 3 plots the ratio f, /f, as given
by the simulation when t = 5260 at the point im-
mediately to the right of the heated region where
the heat flow is largest. f, /f, as given by the
Spitzer-Harm theory is plotted for comparison
and two major differences are apparent: (a) The
simulation curve does not rise to values much
larger than unity and (b) since f, is much lower at
high velocities in the simulation, f, need not take
such large negative values at low velocities to
provide the return current. The limitation of f, /
f, to around unity reduces the large heat flow
which peaks at velocities around 4(h T/m)'~' in the
Spitzer-Harm theory thus reducing the overall
heat flow by an order of magnitude.
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It is found that nonlinear magnetic islands are formed, in an inhomogeneous magnet-
ized plasma, in the presence of a longitudinal current. These magnetic islands may
cause an enhanced electron thermal conductivity in a turbulent plasma state
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One of the most central points in the understand-
ing of transport processes in fusion devices is
the anomalous electron thermal conductivity. Re-
cently, it was suggested that the mechanism of
this conductivity is the thermal motion of elec-
trons along the magnetic field lines which are
perturbed by a two-dimensional, extremely low-
frequency electromagnetic mode. ' Because this
mode has a negligible electric field, it was called
the magnetostatic mode.

The transport due to the magnetostatic mode in
a homogeneous plasma was studied by several
authors. ' It was found that the anomalous elec-
tron diffusion is comparable to the classical in
thermal equilibrium. In a turbulent plasma, how-
ever, the diffusion may exceed the classical by
several orders of magnitude. In a nonuniform

plasma it turns out that the magnetostatic mode
obtains a real frequency which is of the order of
the electron diamagnetic drift frequency ~~.' As
we will show, this real frequency strongly influ-
ences the diffusion. Following the procedure of
Chu, Chu, and Ohkawa, 'we can write the diffu-
sion coefficient in the form

g)
2

D=(2 ) B, (B~')
7J 0 (v~ +y~

where v, & is the electron thermal velocity, B, is
a unifor'm background magnetic field, B~ is the
Fourier component of the transverse-magnetic-
field perturbation, co„ is the real part of the
eigenfrequency and 1/y, is the decorrelation time.
Clearly ~„will strongly decrease the diffusion if
it is larger than y~. For comparison we may con-
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sider two decorrelation mechanisms. First, for
decorrelation due to electron-ion collisions we
have'

y„=v„/(1+ u ~, '/k'c'), (2)

where v„ is the electron-ion collision frequency,
~~, is the electron plasma frequency, and c is
the velocity of light. For fusion temperature we
have v„~ u&~. Since also &u~,'/k'c'»1 we con-
clude that ~, '»y, '. Second, when the decorrela-
tion is due to anomalous diffusion, we have

y~ =k2D.

The parallel electric field is a pure induction
field, i.e.,

'8A/st, (8)

where A is the parallel component of the vector
potential A=A(x, y, t)z. For the perpendicular
electron velocity we have

is the total fluid velocity, E~~ is the parallel elec-
tric field, B~ is the perturbed magnetic field,
and I', is the electron pressure. We include a
background current in (5) by writing

v~~(x, y, t) =v. (x, y, t)+v, (x).

Using the anomalous diffusion for a homogeneous
plasma, we have' v, =(c/Bo)(z x Vy) +(BJ/Bo)v ~~, (9)

D = (T/B, )(2/m, L ~~) In[(Lu&~, /2wc) '~'], (4)

where m, is the electron mass, T is the tempera-
ture in energy units, and L~~ and I. are the paral-
lel and transverse scale lengths of the plasma.
For fusion parameters it is easily verified that
~))k D.

Since the diffusion due to the linear mode is
strongly reduced in an inhomogeneous plasma it
is, for such a plasma, interesting to consider
the diffusion due to the zero-frequency nonlinear
mode. ' In order to have a finite magnetic field
associated with this mode (magnetic island), it
turns out that we must include the background
plasma current in our description. We thus write
the parallel equation of motion of electrons for
flute modes (k

~~

= 0)

V j =eV ~ (n, v„n, v„-) =0,

where
C C 8

v~ = —g&V@ — — — —+5 —VpB B(P„&t .&y

(10)

and eo, is the zeroth-order ion-fluid drift. In
order to close this system of equations we now

need the electron continuity equation with the
electron velocity given by (9), the quasineutral-
ity condition and the relations

B,= VA xS (i2)

and

where —Vy is the perpendicular electric field.
In order to determine this field we use the equa-
tion

~
r~

e e+(v, ~ V)v = ——E
~~

— (vfxBJ z,A m ~~ mc

where v~ is the perpendicular guiding-center
velocity of the electrons,

vt = v ~ —(c/ee, B,)(z&& VP, )

(5)
where we consider the parallel current j ~~

to be
due to electrons only.

In order to find the excitation level of the zero-
frequency nonlinear mode we apply the reductive
perturbation method' to the system (5) —(13),
using the ordering relations'

y(x, y, t) = p~0 (x) + Qe "y, (x, ), 7') exp[it(k, y —ut)] (14a)

A =Be" (x, g, T) exp[it(k, y —( t) }, (14b)

where

g = e(y —At), T = e't, x =x, .

and e is a small parameter. In (14a) we also introduced a background potential y~'~(x) which we will
assume to have a linear x dependence. In the x direction we introduce periodic boundary conditions
with period L. To first order of c we obtain an eigenvalue equation inx giving standing-wave solutions
of the form sink~ where k =2m~/L. Corresponding to this solution we have the linear dispersion re-
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lation

(K+2'g)vo P71e kyvo(K+'g)

ce m;

where ~, =co —(k, c/B, )dq/dK('), D =(I +k2e2/~, 2) ',

=-d Inv, /dx, K =-d Inn, /dx, andn, is the back-
ground density. In obtaining (15) we used the re-
lation

y,"= [k, v, (K +q)O„/k2~, ]A,(') .
We notice that the electric field is introduced by
the background current velocity oo. The disper-
sion relation (15) contains the possibility for a
linear instability, i.e., excitation of the linear
mode by the current. For typical fusion plasma
parameters, however, the mode is stable. We
also find from (16) that for such parameters we
have [ q

(')
[ «(A (')

(

To the second order in e we obtain the condi-
tion A. = Bu/Bk, .

To third order we obtain a nonlinear Schroding-
er equation (NSE) in $ and 7 for A, (') and a zero-
frequency component Ao~'~. In order to simplify
the coefficients of the NSE we make use of the
facts that k2c2«&u~, 2 and ee/Sk, =&a/k, . Several
possibilities for modulational instability exist.
As an example, if the condition

(d&(d2 1 (K + 21) ')22e CUee

k ' 3 k' m. k'c'
i

is fulfilled, we have modulational instability when

k, '&3k '. Because of this instability we obtain
a zero-frequency mode which is localized in the
y direction. Localization in the x direction is due
to the imposed boundary conditions. The zero-
frequency mode is driven by the ponderomotive
force and can be expressed as

6 +5(2) 8 e 0 1 ci m 2 1 k K 0 fe
~A (1)~2 (17a)

where A., =8&v,/&k, and

%'c' m '~+ ~'
K=12 "2 2 (u (u (k —k ') — ' '

— v'[4k (k —k ) —k ]. (i7b)

We note that K has a zero close to k, =k . This corresponds to a resonance where our assumption
Ao~'~ - eA, ~'~ breaks down and we should use another ordering relation where AO-A, &' .

In the region k, 2&3k„', the first term in (17b) dominates. From (17a) we can see that A, (') is pro-
portional to the background current velocity u, . This means that the background current is necessary
for the formation of the nonlinear magnetostatic mode which in the following will be referred to as a
nonlinear magnetic island.

Let us now consider the diffusion due to the nonlinear magnetic islands. For this purpose we use Eq.
(1), where we put ~,=0. Using (12) and keeping only the first part of (17b), we obtain, from (1),

4v gh (K + rj) vo Qcq Wee 0
9(22) B v e

u4u'
, , ~A,

' ~'L'd'k,

where a=i —K(v,2+v„2)/v~0„and V~= KT, /eB, . In order to obtain the diffusion coefficient from L
we need to know the spectrum of the magnetic fluctuations. Introducing an effective temperature T,f f
corresponding to a turbulent level of excitation into the thermal equilibrium spectrum, ' we have

eA 47t e T
2 +jp2c2 (19)

For a low level of excitation, i.e., T,((~ T„ the appropriate decorrelation time )
' is given by (2). We

then obtain the diffusion coefficient

O 2 Tcff D
v ~hvo ~ee v ch (K + )7)
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where kp is the lower limit of the integration in
(18) and D R is the Bohm diffusion coefficient. In
obtaining (20) we estimated (18) by putting k, '
=4k ' and by using the surface element d'k = 2mk

x dk, thus avoiding the singularity. For a higher
level of excitation, i.e. , T,q~» T, we should use
y given by (3). We then have

0 Teff volley ~w vth(K + 'g)

4& T K c kp d PgpI ~ tlap ~De

For typical parameter values, (21) can be esti-
mated as

Finally, we stress that the magnetic islands
give rise to only electron diffusion. Since the par-
ticle diffusion must be ambipolar, the main effect
of the nonlinear magnetic islands will be to in-
crease the electron thermal conductivity in a tur-
bulent plasma state.
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edges the hospitality of the institute for Electro-
magnetic Field Theory and the support of the ex-
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ences of Sweden and the U.S.S.H.

D -10 '(T,fg/T)k, '. (22)

At a turbulence level of Bi/B, -10 ' and with k,
determined by the system size, the diffusion given
by (22) and the corresponding thermal conductivity
z, given by'

~, -nD

are several orders of magnitude above the clas-
sical.

We note that the description in terms of an ef-
fective temperature does not take into account the
details of the k spectrum. To the authors knowl-
edge, however, no calculation or measurement
of the electromagnetic turbulent spectrum in fu-
sion devices yet exists. We point out also that if
kp is determined by some mechanism other than
the limitation due to the system size, magnetic
shear, for example, this may change the scaling
properties of the diffusion coefficient. Another
mechanism that may interact with the studied dif-
fusion is the convective cell diffusion (2)-(4). Be-
cause of this diffusion, y~ is modified.
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