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force (29) is found to correspond to their result
I—([( e —1)E,]&&B,*}+u— ' xB,*+c.c. (30)16~c ~t 8 Bt

Finally we give an interesting example which associated with it is (E„,E,) =(a/2c) )B(z)dz
produces a ponderomotive magnetic field. Con- &(sin~t, cos~t), E,=[ urB—(z) ~2c](xsin~t+ycos~t).
sider a rotating magnetic field with frequency ~, In the cold-plasma limit, the important excursion
(B„,B,) =B(z)(sin~t, cos~t), perpendicularly ap- component $, is given by 2(e—/mc)[B(z)/~] (xsin~t
plied to the static magnetic field which is oriented +ycos~t). We can obtain the ponderomotive mag-
in the z direction. The rotating electric field netic field B",directly from formulas (1), (2),

and (27),

where use has been made of the fact that the con-
tribution from c sy'"/sv is of higher order.

In summary, we have presented a unified theo-
ry which yields a compact but general covariant
form for the ponderomotive scalar and vector po-
tentials. Its apparent compactness is a direct
consequence of the introduction of the particle ex-
cursion in four-dimensional space &. Its general-
ity and usefulness have been demonstrated by the
direct manner in which known results are re-
covered and a new ponderomotive magnetic field
is derived for the case of rotating rf fields.
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The Fokker-Planck equation has been solved numerically in one spatial and two ve-
locity dimensions in order to study thermal conduction in large temperature gradients
occurring in laser-produced plasmas. The heat flow is an order of magnitude smaller
than that predicted by the classical theory when the temperature scale length is a few
electron mean free paths.

PACS numbers: 52.50.Jm, 52.25.Fi

Thermal conduction plays an important role in
the transport of energy in laser-heated solid tar-
gets. The classical theory of thermal conductivi-
ty given by Spitzer and Harm' is derived in the
limit of small temperature gradients and there-
fore may not be applicable to the conditions which

occur in plasmas produced by high-power lasers.
It is commonly assumed that there is an upper
limit to the diffusive heat flow given by Q ~~
= ink T(k T/m)'~'. n is a number of order unity
which is not well defined but is generally taken to
be about 0.6. However, this maximum heat flow
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appears to be much larger than that found in ex-
periments, and numerical simulations give a bet-
ter fit to experimental results if n is reduced to
about 0.03.' The Spitzer-Harm theory is not valid
for steep temperature gradients, and it is possi-
ble that a correct treatment of electron energy
transport would reveal a much lower conductivity
than has previously been supposed. In this Letter,
we present results of numerical simulations
which examine the heat flow in temperature gra-
dients having scale lengths a few times the elec-
tron mean free path. We find evidence for a re-
duction from the Spitzer-Harm conductivity by an
order of magnitude.

Electron energy transport in one dimension can
be described by the Fokker-Planck equation for
an electron fluid in one space and two velocity
dimensions:

BE=r [Jf d'v- 1].

f, the electron distribution function in phase
space, is a function of the spatial dimension x,
the magnitude of the velocity v, and the angle 6

the velocity makes with the x direction. x is a
factor less than unity introduced into the numeri-
cal model in order to make the plasma oscillation
period comparable with the time step needed to
model collisions. The ions are assumed to be
immobile. The equation is made dimensionless
by expressing time in units of v~ and length in
units of the Debye length Xz, of a plasma at a tem-
perature kT/m =1, i.e. , (v') =3. The collision
term is given by the Rosenbluth-MacDonald- Judd
theory as described by Dolinsky' and by Tidman
and Eviatar. ' The collision coefficients (T and
I' in Ref. 5) are calculated in the approximation
that the electron velocity distribution is isotropic.
This is a good approximation since most of the
electrons are relatively slow and collisional. On-
ly the few electrons on the thermal tail are strong-
ly anisotropic and they do not contribute greatly
to the collision coefficients. Electron scattering
by ions is included but energy exchange between
electrons and ions is slow and has been omitted.

The equations are solved numerically' by ex-
pressing f as an expansion of Legendre polynomi-
als in cos61. Advection is modeled on the solution
of the advective equation given by Cheng and
Knorr, and f is interpolated in x by cubic splines.
The motions in the g dimension are modeled on

t, (v) =3N v'/(Z+1)ln(3N ),

and A(v) = vt, (v) is the electron mean free path.
Figure 1 follows the evolution of the tempera-

ture and heat-flow distributions. The tempera-
ture is given as the mean-square velocity and the
heat flow Q is equal to 0.5nm(v'v„). The temper-
ature gradient is initially spread over the order
of a mean free path and extends further into the
plasma as time progresses. The maximum heat
flow always occurs at the boundary of the heated
region where typically (v'v„) 0.2 and (v') -3.5.
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FIG. 1. Plots of (v2) (temperature) and (v2v~) (heat
flow} as functions of x at times t = 1052, 3156, and
5260. The plasma is heated in the region & & 350.

the scheme given by Chang and Cooper' which is
implicit and conserves particles. Acceleration
in the self-consistent electric field is solved ex-plicitlyy.

The program was used to simulate the propaga-
tion of a heat front across a plasma with Z = 4.
The plasma is initially uniform in density and
temperature and is quickly heated to 4 times its
initial temperature throughout a region 0 & x & 350
at one end of the spatial grid. The heat source
is such as to maintain the high temperature in
this region thereafter, injecting sufficient heat
to balance the loss of heat to the cold plasma by
conduction. The program was run with 64 spatial
grid points at intervals of ~=34.71, 32 velocity
grid points at intervals Av=0. 2, and a Legendre
polynomial expansion of eight terms. The time
step was At=5. 26. The electric field was re-
duced by a factor r = 0.0011 and the number of
electrons in a Debye sphere was ND =100. These
parameters give t, (v) =2.0v'at and X(v) = 0.3v'~,
where t, (v) is the scattering time for an electron
with velocity v defined here as
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These values imply a heat flow Q -0.1nk T(k T/

For a more exact analysis of the results, the
heat flow along the temperature gradient can be
compared with that given by the Spitzer-Harm
theory by plotting the heat flow Q divided by the

Z/2local free-streaming limit Qz=nkr(kT/m)
against L/X the local inverse temperature gradi-
ent [L= T/(dT/dx)] in mean free paths. The Spit-
zer-Harm conductivity of a plasma with Z =4 is
Q = 3.64Q~ X/L. Figure 2 plots Q/Q~ against L/P.
at successive grid points along the heat front at
times t= 2630 and t=-5260. The points can be
read from the bottom right where they relate to
the hot end of the grid, following the line of points
to the top left, corresponding to the top of the
heat front, and then back to the right along the
upper curer curves where they correspond to data at the
bottom of the heat front at large x. The left-most
point always corresponds to the first grid point
immediately to the right of the heated region. De-
fined in this way, the thermal conductivity at the
base of the heat front exceeds the Spitzer-Harm
conductivity. The large heat flow there is carried
by hot, nearly collisionless, electrons streaming
away from the top of the heat front while the free-
streaming limit is determined by the initial popu-
lation of unheated electrons. On the other hand,
the values of Q/Q» in the heated region (the low-
er line of points) are much lower than at the base
of the front for similar values of L/A, However,
it is the heat flow on the main body of the heat
front which determines its overall progress into

the plasma, and this is given by the first few
points on the left of Fig. 2. The heat flow there is
an order of magnitude less than the free-stream-
ing limit. There is a tendency for the conductivi-
ty to decrease as the elapsed time becomes large
compared with the angular-scattering time t, (v
= 3) =300 and then the energy-loss time t~(v = 3)
=1400. The relatively steady state which occurs
at large times is more relevant to laser plasmas
in which the heat flow is partially balanced by
convection of the plasma fluid.

These results show that, in the presence of
steep temperature gradients, the heat flow at any
one point is not simply a function of the local
p asmalasma state but is determined by the velocity
distribution over a region which is a few mean
free paths thick. The large scatter of points for
any given L/X when measured at different times
or points on the heat front indicates that we can-
not obtain a unique expression for the thermal
conductivity. Nevertheless, it is clear that the
heat flow is an order of magnitude less than that
given by the Spitzer-Harm theory where it is
important, on the main body of the heat front.
Hence, we have evidence of "flux inhibition"
when the scale length of the temperature gradient
is a few times the electron mean free path.

The reason for the low thermal conductivity be-
comes clear if we consider the velocity distribu-
tion calculated by Spitzer and Harm which takes
the form f(v, x, 8) =fc(v, x)+f, (v, x)cos8. The heat
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Ft:G. 2. Plot of heat flow Q against inverse tempera-
ture gradient. Qy =n&T{&T/~)' ', & is the mean free
path of an electron with energy &k'1', and I = {dT3 I. =7 {dT
d&) '. All quantities are defined locally. The solid
line gives the Spitzer-Harm conductivity for Z = 4.

FIG. 3. Comparison of the computed f, /f 0 with the
curve given by Spitzer and Harm for the same tempera-
ture gradient. The distribution is plotted at time t
= 5260 and at the position immediately to the right of
the heated region where the heat flow is at its maximum.
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flow is mainly carried by a small number of elec-
trons on the tail of the Maxwellian distribution.
As pointed out by Gray and Kilkenny, ' f, /f, ex-
ceeds unity at velocities for which the energy
flux is large when A/L is of the order 0.01, and
the linearized theory breaks down since f is then
negative. Figure 3 plots the ratio f, /f, as given
by the simulation when t = 5260 at the point im-
mediately to the right of the heated region where
the heat flow is largest. f, /f, as given by the
Spitzer-Harm theory is plotted for comparison
and two major differences are apparent: (a) The
simulation curve does not rise to values much
larger than unity and (b) since f, is much lower at
high velocities in the simulation, f, need not take
such large negative values at low velocities to
provide the return current. The limitation of f, /
f, to around unity reduces the large heat flow
which peaks at velocities around 4(h T/m)'~' in the
Spitzer-Harm theory thus reducing the overall
heat flow by an order of magnitude.
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It is found that nonlinear magnetic islands are formed, in an inhomogeneous magnet-
ized plasma, in the presence of a longitudinal current. These magnetic islands may
cause an enhanced electron thermal conductivity in a turbulent plasma state
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One of the most central points in the understand-
ing of transport processes in fusion devices is
the anomalous electron thermal conductivity. Re-
cently, it was suggested that the mechanism of
this conductivity is the thermal motion of elec-
trons along the magnetic field lines which are
perturbed by a two-dimensional, extremely low-
frequency electromagnetic mode. ' Because this
mode has a negligible electric field, it was called
the magnetostatic mode.

The transport due to the magnetostatic mode in
a homogeneous plasma was studied by several
authors. ' It was found that the anomalous elec-
tron diffusion is comparable to the classical in
thermal equilibrium. In a turbulent plasma, how-
ever, the diffusion may exceed the classical by
several orders of magnitude. In a nonuniform

plasma it turns out that the magnetostatic mode
obtains a real frequency which is of the order of
the electron diamagnetic drift frequency ~~.' As
we will show, this real frequency strongly influ-
ences the diffusion. Following the procedure of
Chu, Chu, and Ohkawa, 'we can write the diffu-
sion coefficient in the form

g)
2

D=(2 ) B, (B~')
7J 0 (v~ +y~

where v, & is the electron thermal velocity, B, is
a unifor'm background magnetic field, B~ is the
Fourier component of the transverse-magnetic-
field perturbation, co„ is the real part of the
eigenfrequency and 1/y, is the decorrelation time.
Clearly ~„will strongly decrease the diffusion if
it is larger than y~. For comparison we may con-
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