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cleus are arbitrary, the fact that the high-energy
portions of both neutron and proton forward-angle
spectra are fitted simultaneously by calculations
with use of the same normalization suggests that
the single nucleon-nucleon scattering mechanism
accounts for most of the continuum spectrum
above the evaporation peaks. The systematic
variation of the ratios of neutron to proton yields
with X and Z in approximate agreement with Eq.
(l) provides additional evidence of the importance
of the single nucleon-nucleon scattering mechan-
ism. The combination of these results and the
recent particle-particle coincidence studies of
reactions induced by 100-MeV protons' demon-
strate that the interaction of medium-energy pro-
tons with nuclei is dominated by nucleon-nucleon
interactions.
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An extension of the unsymmetrized optical-potential formalism for two-fragment elastic
scattering is found which fully incorporates the Pauli principle without the use of compli-
cated projection operators. The discrete singularities of this optical potential are shown
to be correlated with the physical resonance structure of the scattering amplitude.

PACS numbers: 24.10.Ht, 24.50.+q

A new approach to the problem of incorporating
the Pauli principle (PP) into the microscopic the-
ory of the optical potential (OP) for elastic nu-
clear scattering has appeared recently. ' ' The
development of Refs. 1-5 differs in several im-
portant ways from previous studies of this ques-
tion."Of particular note is the fact that projec-
tion operators which do not map the space, SCA,
of fully antisymmetrized states into itself are em-
ployed in Refs. 1-5. Although these projectors
are simpler to work with than those defined on
XA, it is then possible that the identification and
physical interpretation of the discrete poles in
the OP (as a function of the total energy) might be
obscured. In the case of distinguishable parti-
cles, such poles of the OP are unambiguously
correlated with the resonance structure of the
scattering amplitude. ' In this Letter we estab-

lish that this correlation also holds for the OP
defined as in Ref. 1. Our major results consist
in what appears to be a direct and physically
transparent generalization of the original Fesh-
back formalism' to include the PP which retains
the same simplicity and practical applicability
characteristic of Ref. 8.

In order to maintain a two-body description of
the elastic two-fragment scattering, the antisym-
metrized transition and OP operators, T (P) and
U(p), respectively, are related by'

U(p) = T (p) —U(P)&BG ST (p),
= T(P) T(P)I &G,U(-P),

(la)

(lb)

where (lb) follows from (la) if the solution of (la)
is unique. Here p refers to an arbitrary (but
fixed) choice of the assignment of identical nucle-
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ons to the two fragments. The set of such phys-
ically equivalent choices (partitions), connected
by permutations of identical nucleons, is denoted
by p. The p-channel Green's function is GB = (E
-H8 +i0) ' while Pz is the projector on the space
spanned by the (relative motion) eigenstates
~ @8(k)) of the channel Hamiltonian Ha. We as-
sume that each of the two fragments represented
by

~ q&(k)) is in its ground state and that 8(p)
&&

I y 8(k)& =
~ q, (k)), where 8(p) is the antisymme-

trizer (internal to the fragments) with respect to
all permutations which map P into itself. Thus,
although the cluster states are individually anti-
symmetrized, Pe does not map XA into itself.
The essential features of the OP are independent
of the choice of P."'

The operator U(P) defined by (1) depends upon
the choice of off-shell extension of the unsymme-
trized transition operators which enter into T(p).

~

We confine ourselves here to a form" of these
operators which yields a U(P) free of all P-class
elastic unitarity cuts.""It is easy to show that,
in this case,'"

T(P) =V88(P)GGg '+8 (P)GR (2)

The distinct identities of 8(P), 8(P), and 8(J3)
should be kept in mind in what follows. " We re-
mark that 8(P) is proportional to the projector on-
to XA, so that [H, 8(p)] =0 implies

[8(j),G, '] = [8(P),V'],

which is useful in our subsequent analysis as well
as in removing the apparent asymmetry in (2).

If we write Q8 = 1-PB, we find from (1), with
the aid of (2), (3), and the resolvent identities
which relate G(z) and G 8(z) for a complex para-
metric energy z, the Lippmann-Schwinger- type
equations'

Uy) =V.'( )+(I+&) '8(P)QSGg '(z)+V. '( )QzGz(z)U(i),

U(P) =V,"( ')+GB '(z)Q~8(P)(1+&') '+U(P)QSG~(z)V. "(z*),
which involve the z-dependent effective interaction

(4b)

V, (z) =(I+X) '[V +'XGB '(z)], (~)

where X—= 8(p)P8. '4 The inverse, (1+ X) ', exists if PB is constructed of correlated wave functions;
the details of the proof of this assertion will be published elsewhere" (see also Ref. 6). We remark
that the calculation of (1+2) ' is relatively straightforward, "so that V, ~(z) is a comparatively uncom-
plicated object.

For elastic scattering we require only the PB-projected OP, namely'U, & =PSU(p)PS. Upon solving
Eqs. (4), expanding the denominator, and projecting, one obtains either the closed-form expression

&,p, (z) =PSV, (z)PR+PgV, (z)Qg[Gg '(z) —QP, (z)QB] 'QBV, (z)PB, (6)

or the alternative form for u,z, (z) given by (6) but
with V, s(z) replaced by V, s~(z*). From this it
follows that v, ,~(z) = 'U, , (z*)." Equation (6) (or
its alternative form) bears a striking resem-
blance to the original Feshbach' form of the OP,
which follows from the neglect of nucleon identity
(& =o).

Equation (6) contains only partially antisymmet-
rized projectors, P 8 and Q~, which refer to a
particular partition P. This simplifies some mat-
ters compared to the treatment of Ref. 6 but it al-
so appears to introduce a new problem. In partic-
ular, we expect" z, , (z) to be free of all tI-class
elastic unitarity cuts but since, e.g. , P&Q S.v 0
for pW p'& p, it is not manifest that (6) possesses
this property. Evidently, however, the right-
hand side of (6) has no elastic unitarity cut in the
P channel. Then, because the matrix elements

(ya(k')~~, R, ~yz(k)) are independent of the choice
of P,"it follows that these momentum-space ele-
ments of the OP possess no P-class elastic uni-
tarity cuts. " This result holds for any truncation
which preserves the label-transforming charac-
ter of QB.'"

The standard structural analysis of the OP em-
ploys a spectral decomposition of the Green's-
function term in (6)."However, in contrast to
the %=0 case, the effective Hamiltonian, H, =—H&
+QBV, RQS, which enters into that Green's func-
tion in (6), is not Hermitian. Thus in order to
effect such a decomposition one must introduce
biorthogonal states 'In part. icular, from (6) we
see that ~, , has discrete pole singularities for
real energies when there are nontrivial, normal-
izable solutions, Qa~y„) and QB~y„~), of the bi-
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orthogonal partner gesoev~e equations'

(E.-Ii.)Q six.&
= o, (7a)

(E -if. ')QslxR'& =o (7b)

e energy E, which we suppose to be nondegenerate. We then introduce a biorthogonal represen-
tation of Qs.'

Qs =Qs"'+ZQR~
R

where QR=QslxR&(xR'l@s, QRQR =QR&R, R, and Qs("QR=QRQs("=0.
If we employ (8) in (6) for z =E+i0, we obtain"

(8)

V, '(s)+(I+6I) +(P)Qsl.Gs '(~) - V.")=V."(~*)+les '(~) - V. ')Qs&(P)(1+6I') '

If we multiply (10) on both sides by Q s we obtain

M(z)(e -a, ') = (z -a.)M'(z*),

where M(z) =Qs(1+2) 'I.VsGs+6(p))Qs. Then we infer from (7) and (11) that QslXR& is proportional to
ISRR&—= QsKt(E„)QslXRt&, unless lgtIR& =0, viz. ,

QslXR& =CRQs+(i)(1+6'') 'QslXR'& (12)

An expression for cR follows by performing the inner product of (12) with (xRtl Qs(1+ 2) '(1+2). Then,
if we use the fact that 8(p) is proportional to the projection on XA, and the identity (i) Ps+(p)(1+6I t)
=Ps, the normalization condition (xRtlQ six„& = 1 implies that CR) 0.

I et us suppose that IKR&e 0 so that we can use (12) to simplify the numerators of the pole terms in
(9). One finds with the aid of (10) that

~.„(E)= ~.„$).g I.C.N. (E.)i(E -E.)),
which is our central result. The background potential is Hermitian analytic, "contains no resonance
poles, and is given by

&.p, '(E) = &.p, ("N)+ZczllNB(E) -NEST))/(E-ER)-Ps(1+3I) '8(P)QslxR'&(xR'IQsv. '(E)Ps) (14)

(E) ~ (0)(E) g PsV. 'QslXR&(XR IQsV, (E)Ps
(9)0opt Opt E -ER

The quantity V, ,(')(E) is given by (6) but with Qs replaced by Qs(') throughout. The analysis of Ref. 8
when applied to (9) implies that, for E above the threshold for elastic scattering, the poles of ~, ,(E)
at E =E~ correspond to physical resonances only if their residues are positive semidefinite and there-
fore Hermitian operators. This condition is needed to define nonnegative resonance widths. Since the
numerators of the poles in (9) are not Hermitian it is possible that the poles of g, , (E) do not necessar-
ily represent resonances. We next show that this possibility is never realized.

The identity (3) can be rewritten as"

The operator NR(z), defined in (15), is positive
semidefinite for real z:

N, (z)

-=Ps V."(~*)Qsl x."&(x.'IQs V. '(~)Ps.

Thus the diagonal matrix elements of the resi-
dues, CRNR(E„), of the poles of g, , (E) are non-
negative. It follows then that the expression (13)
for the OP embodies all of the mathematical
properties and hence the same physical interpose
tation as the original Feshbach representation'

I for the OP without the PP. We have therefore
obtained what appears to be a consistent and sim-
ple generalization of the formalism of Ref. 8 to
include the PP, provided that (12) holds.

We next investigate the case for which (12)
breaks down. This occurs if and only if I%„&=0,
which is equivalent to the condition that there is
a vector

I p„& =Psl pR& such that

&(p)lQ sl xR'& +
I pa&) = 0, (16)

where
I pR& —= 0 is permitted. Equation (16) follows
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from (12) with the aid of the identity Q s[8(p)(1
+'.Rr) '-(1+'.R) 'g(p)]Qs=0. We use (16) to ex-
plicate the E dependence in the parts &BR(E)~
=-

& 1t„r~Q sV, s(E)Ps of the numerators of the pole
terms in (9). We infer from (16) and identity
(i) that

&ys'IQs(1+&) '=&)lR'IQs+&pRI.

Equation (17) when combined with &BR(E)~, (8),
and (Vb) yields

&BR(E)l =&xR'lQs&'Ps -&psl& '(E)Ps, (18)

&X.'IQso& '(E)~(P)

=&X„'IQ,Vsa(p) -&p le(p)G '(E)

&X.'IQsG& '(E)

=&XR'IQsl~ Qs+I -E&)1+&p&l&'Qs, (20)

(19)

respectively. The combination of (19), (20), and
identity (i) yields

&XR IQs~ Ps

=&p IG '(E)Ps-&p I(E-E ) (21)

Equations (18) and (21) imply our basic conse-
quence of (16):

&B.(E)l = -&P.l (E -E.). (22)

This demonstrates that the residues of the poles
of (9) vanish when (12) does not hold, so that (13)
is generally valid and its resonance interpreta-
tion is unambiguous.

The case when ) pg = 0 is of special interest be-
cause (16) then implies that Qs~ ps') is an isolat-
ed Pauli-forbidden state, and we see from (22)
that there is no contribution from this state to

z,z, at any E. Our analysis of (16) did not de-
pend upon the normalizability of Q s~ XR ) so that
our argument applies equally well to continuum
solutions of (Vb). We then conclude from (6) and
(22) that there is no contribution to the spectral
representation of the Green's function for u, &,

arising solely from a Pauli-forbidden resonance
or continuum state.

The results of this Letter extend previous
work'" on the discrete structure in elastic scat-
tering in providing an exact characterization of
the resonances for the scattering of two arbi-
trary complex fragments composed of identical
fermions. This is formulated with incorporation
of the scattering boundary conditions within a
practical definition of the optical potential which
involves relatively simple projection operators.
As a consequence, we anticipate new applications

in the study of compound and intermediate reso-
nance structure in nuclear scattering" as well
as in atomic scattering" problems.
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