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Have Solitons Been Observed in CsNiF3?

George Reiter
Physics DePa&ment, Brookhaven National Laboratory, Upton, Nese York 11973

(Received 30 June 1980)

It is shown that a noninteractirg —spin-wave theory, in which the central component
observed by neutron scattering is attributed to scattering from spin-wave —density f1uc-
tuations, gives intensities comparable to, or greater than, the intensities predicted by
the soliton theory, and provides a better fit to the variation of the intensity with field,
temperature, and wave vector. It is concluded that further work is needed to distinguish
the soliton contribution to the central-peak intensity from the scattering by pairs of spin
waves.

PACS numbers: 75.30.Ds

The central peak observed by neutron scatter-
ing from' CsNiF, in an external field has been in-
terpreted in terms of the scattering from a dilute
gas of solitons. This interpretation has been
based upon a fit to a theoretical spectral function
first derived by Kawasaki from heuristic argu-
ments for the sine Gordon chain, ' and subsequent-
ly argued by Mikeska' to be applicable to CsNiF,
at temperatures well below the isotropic-aniso-
tropic crossover. While this interpretation
seemed to give a plausible explanation of the da-
ta, there remain some outstanding discrepancies.
In particular, the observed intensity at large
fields and low temperatures is much higher than
the theoretical predictions.

I show here that the lowest-order harmonic
spin-wave theory (which is nearly exact at low
temperatures and/or high fields) provides a bet-
ter description of the data than does the soliton
theory. The central peak within the theory is due
to the scattering from spin-wave-density fluctua-
tions, and, if Mikeska's formula is believed, this
mechanism provides intensity at least comparable
to the scattering from solitons, over the range of
the published data. In particular, the variation
of the intensity with field, temperature, and wave
vector is accurately reproduced over the range
in which the harmonic theory can be expected to
have some validity, which is most of the range of

the data.
We take, for the Hamiltonian of CsNiF3,

X=+ [-JS;~ 5;„+D(S,")' —ggRHS, .'],

with J'= 23.0'K, D = 8.9'K, g =2.4, and a quantum
spin of 1. In the presence of a field at sufficient-
ly low temperatures, the spins are nearly fully
aligned, and one can use spin-wave theory to de-
scribe the system. The standard Holstein-Prim-
akoff transcription to boson operators, taken to
lowest order, i.e. , S,'=S-a, ta, , S,. =(S/2)"'a;t,
S,.' = (S/2)"'a;, gives a quadratic Hamiltonian that
is readily diagonalized. However, the (S,")' term
must be treated carefully. ' What is required is
that the boson equivalent gives the same matrix
elements between states with one excitation and
the vacuum for the operator [(S/2)'"a t, (S")'] as
one obtains for [S,(S")'] between corresponding
states. Here (S")' is the spin equivalent of (S")'.
This ensures that the spin-wave frequencies are
correct to first order inD, for arbitrary S, and
actually to second order, for S = 1.4' One finds
then (S,.")' = —,'(2S —1)(a,t+ a, )' rather than —,'S(a, t
+a;)'. The result, for spin 1, is that the effec-
tive value of D is just half of what one would ob-
tain from a naive substitution. Setting D =D(S
——,')/S and H= g1I.BH, we obtain the equivalent
Bose Hamiltonian

K = —V(JDS'+HS) +SP [(J,+D +H —J,)n, ta, + 2D(a, ta, t +a,a,)], (2)

where J, =2J cos(qa) and a is the lattice parameter. The Hamiltonian is diagonalized by the transforma-
tion a, = n, b, —p, b, t and its conjugate, where a, = coshG„B, = sinht1 „and tanh(26, ) =D (J,-J, +D +H) '.
Dropping the ground-state energy, we obtain

H =Q (u, b, tb„(u, =S((J,—J,)'+2(D +H)(J, —.J,) +2DH +H' jI' '
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The correlation functions of interest are

(S,"(t)S,") = 2S(a, —p, ) [n, exp(i~, t) + (n, + 1)exp(- i~, t)],

(S,'(t)S,") = 2S(a, + p, )'[n, exp(ice, t) + (n, + 1)exp(- i~, t)],
(5S,'(t)M;) =N 'Q (a, a, +P, P, )'exp[i((u, —(u, )t]n, (n, +1)g(q-q, -q, )

(4b)

where

+2(a, P, +P, a, )'(exp[i(u), +(u, )t]n, n,

+exp[-i(~, +~, )t](n, +1)(n, +1)]&(q -qi-q2)

P [a, ta, —(a, ta, )]5(q —q, —q, ), n, = [exp(P~, ) —lj '

(4c)

The magnetization is given by

(S,.') = S —(a,. t a,. )= S —N 'P [(a,' +/3, ')n, + j3, ']

The neutron-scattering cross section is proportional to S,"(~), where

S, (~) =(I/2~) f e'"(S, (t)S,")dt. (7)

In Fig, 1, I show the longitudinal response function calculated numerically from (4c) for a set of pa-
rameter values (q, H, T) characteristic of the experiments. The experiment actually measures some
combination of the S, (~) depending upon the orientation of the scattering vector. In the case that it
lies along the chain, this is S, (&u) +S, (&u). In the harmonic approximation, the transverse spectral
function has no intensity near ~ =0, and the central peak is contained entirely in the longitudinal re-
sponse. Its intensity, which we take to be the initial value of the first term in (4c), vanishes at T= 0,
while the high-frequency band, corresponding to the neutron producing a pair of spin waves in the
crystal, persists at T=0. The high-frequency band is currently the subject of experimental investiga-
tion, the results of which will be reported separately. '

Mikeska's formula for the contribution to S, (cu) due to solitons, as modified by Steiner' and by Leung
and Huber' to include the transverse contribution, is

(8)

where m =(Ii/Ja')' ' and c =aS(2JD)'~2. The result
in the literature"' differs from Eq. (8) by a fac-
tor of 2m, because of a different definition of
S, (&u). Equations (7) and (8) are consistent, and
(7) is the usual definition. The formula, is only
valid for nonrelativistic particles, but the rela-
tivistic corrections' are not large enough to
affect our argument, and (8) has the virtue that
the integrated intensity can be simply calculated.

In Fig. 2, I show the integrated intensity in
the central peak as calculated from (4c) and (8).
The relative intensity of the two spin-wave and
soliton contributions is shown correctly, while
the experimental intensity has been normalized
to agree with the spin-wave result at the lowest
temperature. In Fig. 3, I show the same com-
parison with the field being varied, the experi-
mental results being normalized at the highest
field. In Fig. 4, I show the intensity as a func-
tion of wave vector for a fixed field and tempera-

!ture, compared with the experimental results.
A similarly good fit is obtained from Eq. (8) if

60.0—

V)

w 400a

Q =O. IO rlu

H=5 kg
T= 9.5 'K

C3

20.0—
(')

0.0
0.0 08 I.2

FREQUENCY (cv/JS)

I

l.6 2.0

FIG. 1. The longitudinal spectral density in CsNiF3.
The arrow locates the spin-wave frequency.
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FIG. 2. Variation of the intensity in the central peak
with temperature. The experimental points are the
data of Kjems and Steiner (Ref. 1).

m is allowed to be an adjustable parameter, but
the m required corresponds to a field of roughly
four times the actual applied field. ' There are,
of course, no adjustable parameters in the spin-
wave theory.

The spin-wave theory is rigorously correct in
the limit of high fields, and nearly so for arbi-
trary fields as T-0. Some idea of its validity at
the fields and temperatures of the experiments
can be had by comparing the prediction of the
magnetization in the classical limit with the exact
results from transfer-matrix calculations. ' %e
find that for fields above 5 kG and temperatures
below 10'K, the deviation of the spin-wave re-
sult from the exact result is at most 10%I of the
value of the magnetization.

The spin-wave theory makes one prediction that
is not borne out by the experiments. The central-
peak linewidth from either theory is proportional
to q, but the magnitude of the linewidth predicted
by the spin-wave theory is about twice the max-
imum experimental value for a given q and is
nearly independent of temperature, whereas the
experiments do show a significant temperature
var iation. '

The most charitable interpretation of the data
is that they consist of the sum of a spin-wave and
soliton contribution, of comparable intensities
at low fields and jor high temperatures. To show

FIG. 3. Variation of the intensity in the central peak
with field. The effect of the variation of the soliton
shape with field, which is responsible for the downturn
of the theoretical curve, was omitted in Ref. 1 and
accounts for the difference between this figure and
Fig. 2 of Ref. 1.
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FIG. 4. Variation of the intensity of the central peak
with wave vector. The solid line is the spin-wave pre-
diction.

unambiguously that there was a soliton contribu-
tion would therefore require knowing the theo-
retical spin-wave contribution, to an accuracy
of better than, say, 50%, and comparing with
absolute intensity data, obtained for instance by
normalizing to the low-temperature, single-spin-
wave intensity. This requires that a perturbative
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treatment of the spin-wave theory, taking into
account anharmonic effects, be done with the
sufficient rigor that its accuracy could be asses-
sed at the temperatures and fields of the experi-
ment. A subtraction could then be done to deter-
mine the amplitude of the nonperturbative effects.
We expect that the contribution of breather modes,
which are essentially bound pairs of spin waves,
would be included in the perturbation theory, and
would not make any separate contribution to the
intensities, although they might produce obser v-
able effects in the shape of the spectrum. The
nonperturbative contribution to the total intensity
could presumably be associated with the solitons,
and may be describable by (8). Inasmuch as no
such separation has been accomplished to date,
one cannot say that solitons have been observed
in CsNiF, .
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Substitutional Donors and Core Excitons in Many-Valley Semiconductors
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The shallow-deep instability of substitutional donors and core excitons is discussed,
with inclusion of all intervalley interactions. Shallow levels result in Si for a screened
point-charge potential, because intervalley overlap and kinetic energy balance the po-
tential-energy terms, which are severely reduced, at substitutional sites, by umklapp
effects. Contrary to recent claims based on consideration of potential energy only, many-
valley interactions cannot therefore be invoked to predict deep core-exciton levels in Si.

PACS numbers: 71.55.Fr, 71.35.+z

Much interest in impurity states in semicon-
ductors with many-valley bands has recently been
stimulated by the experimental discovery that
interstitial muonium is a deep donor in Si and

Ge, by suggestions that core-exciton levels may
also be deep, and by the theoretical discovery
that drastic modifications of the traditional3 effec-
tive-mass approach are needed to account for in-
tervalley interactions properly. ~ ' K the theo-
retical description of muonium in Si and Ge, ''
two effects have been considered to explain its
deep-level character. One is the point-charge
nature of the muon potential, as contrasted with
weaker pseudopotentials for impurity atoms with

core electrons; the other is the location of the
muon at the interstitial site, where intervalley
matrix elements of the point-charge potential are- 3-4 times larger than at the substitutional site. '
Very recently~co it has been argued that the sec-
ond effect (the site dependence) plays no role and
that, in fact, deep levels result in Si from a
screened point-charge potential, irrespective of
its location. In view of the relevance of the ques-
tion in general, and in particular for the problem
of core excitons, which can be described as elec-
trons bound by the nearly pointlike charge of a
core hole in a host atom, the purpose of the pres-
ent Letter is to discuss the energy levels of a
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