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Temperature Dependence of the Condensate Fraction in Superfluid 4He
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A temperature-dependent expression for the condensate fraction np for He II based on a
model Hamiltonian for superfluids is presented. This gives roughly the same magnitude

for n p as is observed. The model also suggests the following behavior as T 0 for the
roton effective mass p„(T) = p„(0) f. 1 —(ntH, /24& cn) (kBT) ] and the roton minimum energy
&(T) =b, (0) (1—(mH~/24& cn) (ART) ].

PACS numbe rs: 67.40.-w

Superfluidity' in helium is associated with the
presence below the A. point of a "condensate. "
Now the simplest form of condensation is that
occurring in the ideal Bose gas. Thus, a natural
assumption of early theories of superfluidity was
the existence of a finite macroscopic fraction n,
of the particles in the zero-momentum state.
However, no successful microscopic theory—
comparable with the BCS theory —has been de-
veloped along this line notwithstanding the many
efforts, and this has lead some people to consider
more complicated condensates. " Thus, the
model for He II of Ref. 2 features macroscopic
occupation of infinitely many single-particle mo-
mentum states in an arbitrarily small neighbor-
hood of the origin k' = 0; and so possesses a non-
uniform condensate. This new model is a gen-
eralization of Bogoliubov's model and gives rise
to not only a phonon spectrum, superfluidity, and
a phase transition, but also to a roton spectrum,
a condensate fraction of 10%, and the correct
temperature and density dependence of the roton
parameters and speed of first sound. Now rigor-
ous proofs' demand that a Bose gas in spatial di-
mensionality d - 2 must possess a nonuniform
condensate. Therefore, the model of Ref. 2 is
applicable to two-dimensional (2D) superfluids
and leads' to phononlike and rotonlike excitations
for such Bose systems. Recent neutron-scatter-
ing work' further confirms the existence of a 2D
roton with the properties given by the roton of
Ref. 3. Consequently, the nature of the conden-
sate is all important and has brought about an
active experimental search. for it and its proper-
ties; in particular, the temperature dependence
of the condensate fraction. ' ' In Ref. 2, the con-
densate fraction n, in superfluid 'He was found
to be related to the roton parameters —effective
mass )L„and momentum p,—and the s-wave scat-
tering length a in vacuum by

32~ ah'n 9 m H,
'

where n is the number density. Now8 po(p)/)t
=Ap' ', with A = 3.64 cm g

' ' A ' and a = 2.2 A,
so that

n, 2.14p-").„'/m„, ', (2)

with p in grams per cubic centimeter. There-
fore, the temperature dependence of the conden-
sate fraction is directly related to the tempera-
ture dependence of p.„. Thus, for p=0. 143 g/cm'
and since' p,„(1.26'K) = 0.160m „,at 1 atm, (2) be-
comes

(3)

to all the experimental values. One finds' with

T q = 2.17 'K that no(0) = 0.129 + 0.016 and o. = 5.4
+ 3.8. It is evident that our low-pressure results
are quite consistent with the data at saturated
vapor pressure. ' ' However, the experimental
error bars are at present too large to test very
accurately the temperature dependence of our ex-
pression (3). Nevertheless, our result (3) lends

TABLE I. Values of the condensate fraction np(+) as
determined from Eq. (3).

n p

1.26
1.45
1.68
2.11
2.13
2.17

0.105+ 0.007
0.109+ 0.007
0.098+ 0.007
0.078 + 0.012
0.065+ 0.006
0.058+ 0.014

no(T) = 0.105 p„'(T)/)i„'(1.26 'K) .
In Table I are listed the values for no(T) as deter-
mined by (3) with use of the results for p, „(T)
along the P =1 atm isobar [Ref. 8, Fig. 10, and

Table I.] The values of n, (T) for T - T q are
shown by the filled triangles in Fig. 1. The solid
curve is the result of a least-squares fit' of the
relation
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FIG. 1. The condensate fraction in superfluid 4He.
The open. symbols show the values obtained from the
temperature variation of the pair-correlation function:
square, Ref. 5; circles, Refs. 6 and 7. The filled
square and circle are from neutron inelastic-scattering
measurements (Ref. 9). The filled triangles are de-
termined from Eq. (3) and the && is from Monte Carlo
(Ref. 10) and variational (Ref. 11) calculations at 1'=0.
The curve represents a least-squares fit of Eq. (4) to
all the experimental values.

further support to the assumption that f(T)
=(1 —no)' in the experimental observations" for
the static pair correlation function g(r, T) for T
(Tq=2. 17'K and r ~6 A, which gives

g(r, T) —1 =f(T)[g(r, 2.27'K) —1]

with f(T) decreasing monotonically with decreas-
ing T. Note that the formal density-matrix argu-
ments which yield f (T) = (1 —n, )' are not without
criticisms. ' The tentative nature of the no(T)
"measurements" should be emphasized since the
experimental results reported in Refs. 5-7 con-
stitute a measure of n, (T) only if the prescrip-

tion f(T) =(1 —no)' is in fact correct for the case
of 'He. Note also that an alternate explanation
of the enhancement of the short-range spatial
order can be based, interestingly enough, on the
thermal excitation of rotons. " Since this theory'
is based on a model Hamiltonian which neglects
interactions between excitations, the results
should be good up to about' 1.8 K when the exci-
tation density is sufficiently small. At tempera-
tures in the neighborhood of the A. point, where
the density of excitations would be very high,
these results should not be applicable. For in-
stance, it does not appear' that p, „vanishes at
Tq as would be required by (3) and the expecta-
tion" that no(T) ~(Tq —T)' near Tq. It is inter-
esting that for fixed T, p,„decreases with in-
creasing density', and thus, by (2), n, is a de-
creasing function of density.

A rigorous microscopic derivation' of no(T) as
T-0 gives that n, (T) =n, II —(m„,/12K'cn)(k, T)'],
where c is the velocity of sound at T = 0. The T'
law is based on exact result" for the one-particle
Green's function in the limit of small k and ~ at
T =0. Unfortunately, these exact results are not
obviously valid for Bose systems with nonuni-

form condensates; and, hence, we cannot con-
clude from (3) that rigorously

i, (T) =1,(0)l1 —(m H. /24~'c&)(& R»']

a.s T -0. Since' p„=m H, 'b, /p, ', a result analo-
gous to (6) follows for the roton energy b,. How-

ever, one can still obtain the T' law (6) for p.„(T)
by adopting a phenomenological point of view"
where the T law for n, (T) is valid as long as the
low-energy excitations of the superfluid system
are described by phonons with a linear dispersion
law. Since the model of Ref. 2 gives rise to such
phonons, the only caveat would be the macroscop-
ic occupation of infinitely many single-particle
quantum states with an accumulation at k =0. In
the expression for the static order-order corre-
lation function (gt(x')g(x)), we assume" that the
moduli of the field operators are uncorrelated.
Therefore,

(j t(x') g(x) ) =
& I

y(x')
I ) &

~
p(x) I ) & exp'-iy(x ) ]expI iy(x) ]),

where y(x) is the phase of j(x). Thus, (I g(x) I)=In(x)]~', 'with

(j~(x') g(x)) = 4*(x')4'(x) +(1/V) Q ngexpI -ik (x' —x)]
k

an«(x) = (g (x )$(x )), where 4(x) is the condensate wave function and n- is the helium-atom momen
«m distribution. Asymptotically, when r—= Ix'-xI -~ and x, say, is of macroscopic order, (ttI (x')gx))
=(No/V)$, ', where 1V, is the total number of particles in the condensate and (,' is the fraction of par-
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ticles in the condensate with zero momentum. From (7) we have"

( g t(x )g(x ))= [n(x )n(x )]'~' exp [E(r) —E(0)],
where

, Zcm„. 1E(r) =(2w) 'J
Ak ( kk/k T) —1

+
2

e' 'd k. (10)

Therefore, asymptotically as r= ~x -x) -~ and
x is of macroscopic order, (g (x )g(x)) =(N/
V)e ~+; and so, (No/V)$, '=(N/V)e ~+. Conse-
quently, if $,

' is temperature independent, then
N, (T)/N, (0) = exp(- jE(0) —[E(0}]r,) ) and, thus
at low temperatures we have the T' law for n, (T).
The temperature independence of $,

' is obtained
in the nonuniform condensate model by showing
that R= $,', where R is the temperature-indepen-
dent "renormalization constant" of the phenome-
nological approach. " Therefore, one obtains an
understanding of the physical meaning of the con-
stant A. Now the phenomenological approach" is
concerned with a condensate composed of macro-
scopic occupation in the zero-momentum state
only. Firstly, it gives" that lim, ,n~ = (n, /n)
x cm H, /2ak which is consistent with the micro-
scopic" theory of a homogeneous system at zero
temperature. Secondly, it gives for T&0 that
lim, ,n„= (n, /n)m H,k BT/5'k' which is compatible
with Bogoliubov's inequality for n„; however,
Bogoliubov's 1/k' theorem does not necessarily
follow' for spatially inhomogeneous condensates.
Now for the unrenormalized quantities one has
that (N/V)e ~'0'= (N, /V)„($,')„and since" (N, /V)„
=(N/V}e ~'" we have that ((,'}„=l. In the model
of Ref. 2, the number of particles in the conden-
sate with zero momentum is N, ),' and in the ab-
sence of rotons (,' = 1—in the limit $,

' -1 our
model reduces to that of Bogoliubov with a uni-
form condensate and no rotons. Now the intro-
duction" of the temperature-independent "renor-
malization constant*' R takes into account the
rotons which are difficult to calculate in a phe-
nomenological manner. Therefore, (N/V)e "'O' R
=(N, /V)„(g, ')„R; hence, since $,'=—($,')„R, one
has that g,'=R Conse. quently, N, (T)/N -=(N, /
N)„R=e ~'o')o2 which also leads to the T' law for
n,(T). That is to say, the phenomenological ap-
proach is applicable to the zero-momentum occu-
pation only but by introducing a renormalization
factor and, thus, rotons, the condensate fraction
is made to agree numerically with that for real
superfluid helium. Notice that the numerical ex-
ample" with a phonon cutoff of mc/2k= 0.755 A '

gives exp(- [E(0)]r, }=0.61 and since from our

model N, (0)/N=0. 10, we have that $,'=0.16.
Therefore, this numerical example implies that
of the 10/0 of particles in the condensate, an es-
timated 1.6'%%ug are in the zero-momentum state
and this value is temperature independent up to
about 1.8'K.
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