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The reflection of a light pulse from a spatially dispersive medium is investigated theo-
retically. For laser frequency at exciton resonance, spatial dispersion enhances the re-
flected transients associated with the light pulse. For the case of CdS and GaAs crystals,
the transient intensities are about 10' of the incident intensity at a time 0.1 ps after the
trailing edge of the reflected signal. The theory predicts a crossover from exponential
to slow power-law decay rate of transient ref lectivity; this occurs at a characteristic
time f, -1 ps after the trailing edge of the pulse for CdS and GaAs.

PACS numbers: 42.10.-s, 78.20.-e

This Letter reports results of a theoretical in-
vestigation of transient optical ref lectivity from
spatially dispersive media such as CdS and GaAs. '
The laser frequency of an incident pulse is taken
near one-photon resonance with the transverse
exciton-polariton frequency co, . We show that en-
hanced (transient) ref lectivity persists for sever
al picoseconds after a laser pulse is cut off. In
general both the leading and the trailing pulse
edges give rise to transients. Experimentally it
may be more convenient to look for trailing-edge
transient ref lectivity since steady-state reflec-
tivity will then not interfere with measurements.
For sufficiently long pulses (T & a few picosec-
onds), transients from the two edges will be es-
sentially decoupled and can be considered inde-
pendently. Our results show that transient reflec-
tivity consists of a "local" part and a "nonlocal"
part. The former, although the only one present
in a local media, is at least an order of magni-
tude smaller than the latter. The measured tran-
sient ref lectivity will thus almost completely
arise from spatial dispersion: To the leading or-
der, it varies as M "~ with the exciton mass.
Initially the time decay of reflectivity is exponen-
tial, crossing over to inverse-power decay, at
about 1 ps in CdS or GaAs. Its maximum magni-
tude is about 10/p of the incident intensity. These
effects should be measurable.

The origin of spatial dispersion or nonlocality

is due to coupling of an exciton state (with center-
of-mass motion included) to a photon, producing
an exciton polariton. This results in a wave-
vector-dependent optical dielectric response.
Consequently there is an "additional" transverse-
propagating mode compared to the case of a local
medium (M =~). In particular there is a (trans-
verse) mode in the "pseudogap" frequency re-
gion, w, &w &~„where w, is the longitudinal fre-
quency. Steady-state ref lectivity, transmittivity,
and inelastic scattering in such media have been
well studied'. Ref lectivity is generally maximum
in the pseudogap region although smaller than
that of a local medium. Transient optical trans-
mission was investigated theoretically by Birman
and Frankel, ' who showed that a new exciton pre-
cursor occurs; Johnson' discussed transient os-
cillations in transmittivity of a plate.

We consider transient reQectivity from a semi-
infinite nonlocal medium occupying half-space z
&I., with z&L being vacuum. A detector is
placed at z =0. The nonlocal medium is taken to
have a scalar isotropic dielectric susceptibility

X(r, r') =X(r —r') —X(& —&',~+s'»

where &
= (x,y) is the transverse part of r At.

time t = 0 and at z = 0, a square optical pulse,
with laser frequency u, and duration T, is inci-
dent normally on the crystal surface. The elec-
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tric field

(2)

where 8(t) is the Heaviside step function, corre-

!
sponds to a polarized, monochromatic plane-

wave field.
Because of the linearity of the problem, we

may Fourier analyze (2) and treat each frequency
component by dispersion theory. The reflected
field is obtained as a superposition of these corn-
ponents and can be written as a complex-frequen-
cy integral, '

E„(0,t) =~ lim (1/2n) f d~[p (~)/(~ —~, +iq)] exp[- iv) (t —2L/c)](1 —exp[i(~ —&o,)T]]+ c.c., (3)

where p(cg) is the complex-amplitude reflection
coefficient for susceptibility of Eq. (1) and is giv-
en by

p(~) = [1—n(~)]/[I+n(~)],

n((u) = (n, n, + e,)/(n, +n, ). (5)

In Eq. (5), e, is the background dielectric con-
stant, and n, and n2 are the refractive indices of
the two propagating transverse modes in the non-
local medium. '

The integral (3) is evaluated in the complex &u

plane. For t &2L/c, we close the contour in the
upper half-plane and find E„=Oas required by
causality. For t &2L/c, the contour is closed in
the lower half-plane. The integrand in (3) has
the following singularities: (a) a simple pole at
+,—iq, (b) four branch points &o, (joined by a pair
of branch-cut lines) with ~,*= —v, and &u,

*= —cu4.

Details of the contour integration are given else-

!
where. "Steady-state ref lectivity arises from

!
the pole contribution, while the branch points
contribute to transient ref lectivity. For a local
medium (M =~) and far from exciton resonance,
Elert' evaluated branch-point contributions ana-
lytically.

A simplification in the nonlocal case occurs by
noting that a small dimensionless parameter ex-
its: 6=(h~, /Mc')"', where c is the velocity of
light, and 6- 10 ' for CdS or GaAs. To the lead-
ing order in 5, neglecting off-resonance terms,
the reflected field at time t &2L/c +T can be writ-
ten as'

E„(0,t) =-x g (R,.(P)( isn(~, t —cp,.),

where R,(f) =(R,.(g)(e'~~'~~', P =t -2L/c —T is a
suitably retarded time (f =0 when the trailing
edge of the reflected pulse arrives at the detector
at z =0), and

~ 3 l/2 rl
( )

2t5 rgg2 COg exp(-p5h&gpss) [(1 )yg2, (1 )gg2]
pal' ~ o [cog —(do —t(pic + F/2)]

R (&)=—p'e '" d~ ' ' [( +ipse/ )"'+c c ]P
— e B

[ (1 )
.

/2]
@+8 +C.C.

Here p =2pn Je„p'=4pn„andn, is the exciton
oscillator strength. Further, l is an exciton
damping constant. We note that as M —~ (6-0),
R,(&)-0, and R, (p) reduces to Elert's result' in
the limit of being far off resonance (~,«~, ). A
remarkable feature is that R, arises solely from
spatial dispersion and is one order of magnitude
larger than R2. Although a finite exciton mass al-
so introduces new features such as double peak
in R, as a function of +„in this Letter we neglect
R, because major experimental features will be
determined by R l alone.

We have numerically evaluated R,(f) using pa-
rameters appropriate for CdS and GaAs. In Fig.
1, (R, (&)! is plotted for CdS as a function of time
for three values of I" for which w, =w, is assumed.
Note appreciable ref lectivity persists for a few

!picoseconds after the pulse cutoff. In Fig. 2,
resonance enhancement of !RJ is shown at a fixed
time P = 0.1 ps for two values of I. Enhancement

by a factor of 5-10 is seen in a narrow frequency
range. In Figs. 3 and 4, similar features are
shown for GaAs parameters. In both materials
the on-resonance transient ref lectivity (R,(&)(' at
0.1 ps after the pulse cutoff is about 10% of the
incident intensity and remains 1% even after sev-
eral picoseconds.

An important feature of Figs. 1 and 3 is the
crossover from a fast exponential decay to a slow
power-law decay. An estimate of the crossover
time is obtained from Eq. (7), which can be eval-
uated analytically for several limiting cases of
interest. ' Such an analysis reveals the existence
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FIG. 1. Decay of IRi(f) I with t for the on-resonance
case (u()=~&) for three values of I'. At g =0, the trailing
edge of the reflected pulse arrives at the detector. The
parameters are appropriate to Cds:S. & =8 4na =0.0125,
~u&=2.55 eV, and ~=0.9~~~ (with ~.-~ the electron mass).

. I5

.IO

.05

I

3 4
Time in p

—sec.

of a characteristic time

r„,= (potu, ) '= [Mc'/(4m~ ptu, ')]'",
and one finds (setting I =0 for simplicity) that

C, exp(- g/g, ) for P «f,
C /«o &»g„

~

~ ~where C, and C, are slowly varying functions of
time. For materials of interest, such as Cds
and GaAs, we estimate that &, -1ps, which
should be experimentally observable. Hence to
asymptotic accuracy, the decay of iR, (P)i begins
exponentially and shows a crossover to a p

'
10power law around P, .

FIG. 3. Time decay of IRi(t)I as in Fig. 1. The pa-
rameters correspond to GaAs: &0 = 12.5 p

=5 4~~ =0.0013,
~~& = 1.515 eV, and ~= 0.6~e .

Measurement of the predicted features of tran-
sient ref lectivity can provide independently de-
termined values of important exciton-polariton
features such as I', M, a„andm, . Recently
grroup velocities of exciton polaritons in GaAs
and CuC1 have been measured with use of tran-
sient spectroscopy methods. " This gives sup-
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FIG. 2. Variation of

IRAQI

with the laser frequency coo

at a fixed time g =0.1 ps; full line, &=5x10 ~~&, dashed
line, ~=5&10 &&. The phase p~ is shown on the right.
Cds parameters are as in Fig. 1.

FIG. 4. Resonance enhancement of IRAQI for GaAsr GaAs at
a fixed time g =0.1 ps for two values of 1. The param-
eters are those of Fig. 3. The variation of phase p~
is similar to that of Fig. 2.
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port to our belief that the predicted transient ef-
fects could be measured.
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Experiments have been performed to measure the neutral pressure buildup behind the
limiter as a function of plasma density and gas species. The results indicate that a pas-
sive mechanical limiter effectively removes from the vacuum vessel up to 20~o of the
atoms injected during a discharge. The feasibility of mechanical limiters removing the
fusion-reaction helium ash, thus negating a major need for magnetic divertors, is dis-
cussed.

PACS numbers: 52.55.-s

To sustain a controlled, steady-state D-T
burn, one must be capable of maintaining a fixed
e-particle density. For typical ignition-size plas-
mas and plasma parameters, the steady-state
conditions may be achieved if approximately 10'
or more of the n particles are not recycled; in
other words, if they are pumped away. " One
possible way to do this is by using a passive
mechanical limiter, comparable to those promot-
ed by Schivell. '

Experiments to investigate the effectiveness of
a passive-limiter pumping scheme were per-
formed on the Alcator-A tokamak. The vacuum

vessel has a major radius of 54 cm and a minor
radius of 12.5 cm. The total volume of the torus
and the diagnostic port extension tubes is 451
liters; plasma volume is = 117 liters.

A single molybdenum limiter is inserted from
the horizontal port as shown in Fig. 1. The limit-
er is electrically floating and isolated from the
vacuum vessel. The toroidal thickness of the lim-
iter is 1.1 cm with a poloidal extension of 205 .
The limiter inner radius (plasma radius) is 10.4
cm and the outer radius is 12.2 cm.

At the limiter flange there are three port ex-
tension tubes. During tokamak operation the ex-
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