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The phase diagram and the critical behavior of a discrete two-dimensional model of the
commensurate-incommensurate transition is determined with use of an approximate map-
ping onto the six-vertex model. For an uniaxial substrate the critical behavior is that
of the continuum case. For a square substrate either a single first-order transition or a
second-order transition followed by a first-order transition is found.

PACS numbe rs: 64.60.Fr, 64.70.Kb

In adsorbed gas monolayers phase transitions
between commensurate (C) and incommensurate
(IC) structures have been observed, ' ' both of
first and second order. Current theories of these
transitions are either restricted to T = 0 ' ' or
assume a substrate potential periodic only in
one of two space directions„' "and use a con-
tinuum approximation for the layer. Near the
C-IC transition the IC state consists of large C

regions separated by domain walls. The critical
behavior of the transition is dominated by the
walls. In the continuum models the walls can
move freely; however, if the discrete nature of
the layers is taken into account a periodic poten-
tial acts on the walls. At T=0 this leads to the
appearance of infinitely many C phases, the so-
ca1led devil's staircase. " In this paper discrete
models of the C-IC transition at T g0 are treated
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for both uniaxial and square symmetric substrates. We shall always assume to be at sufficiently low-
temperatures so that there are no free dislocations, i.e., the IC state is a "floating solid. ""

We consider a, square lattice (lattice constant a) of harmonically interacting atoms in a periodic po-
tential of wavelength A.. Its energy is

&= Uo+ W, W= VQ cos(2v[u, , +v, , +5(i+j)]],

U, =P (A[(u,.„„—u, , )'+(v, ,„—v, „)']+ B[(u, ,„—u, , )'+(v,„,—v,.„)']
f ~ 2

+C(u, „,—u. . .)(v, , „—v, , ,)j.
Here i and j label the atoms with displacement components u,.„and v;, , and 5=a/A —1. The minimum
lines of W make a 45 angle with the x axis. We note that U, is not invariant under rotations (it is ap-
parently impossible to construct an invariant expression bilinear in u;„, v, , ), but this should not af-
fect the C-IC transition.

To treat the statistical mechanics, following Villain, "we make the approximation

exp[ —PVcos(2vu)]=%0 P, exp[ —Pp(u —n)'], (2)

where p. is determined so that the first Fourier components in Eq. (2) agree, and the partition function
follows as

Z = Q J g du, , dv, , exp( —P[ U+ pP(u, , +v, , +5(i+j) —n, , )'] j,
&n;, ) f ) gg

where an integer variable n, , is associated to each lattice point and a factor E, has been omitted.
The integrations over u, , , v, , ca»ow be done, and only the sum over (n, , j remains, i.e., Z describes
the statistical mechanics of a system with energy functional

H„= Q a, [n;„,,„n,, —5(l+m)]—';
i, 2, L, m

[(A +B)(Q„'+Q,') —4CQ„'Q, '] exp[ia(lq„+ mq, ) ]
2N, (AQ„'BQ 2+ p)(AQ, +BQ„'+ p,) —(2CQ„' Q, '+ p,)' '

Q„=2sin(2q a), Q '=sinq a.

(4b)

The a, decay exponentially for large l, m; the
decay is the faster the larger V relative to the
elastic energy (1b). The variables n, , have a
simple physical meaning: n; „,—n, , =0, 1
means that the corresponding adjacent atoms
are in adjacent wells or have one empty well be-
tween them, respectively. H„ is a generalized
roughening model. For 5=0 this model has a
Kosterlitz-Thouless (KT)" transition at T,
=3.5a». '6 The transformation n, , -n, , +5(i+j)
shows that the same transition occurs for all
integer values of 6.

To treat the general case hg0 we make two ap-
proximations: (i) we retain only nearest and
next-nearest interactions in II„. For T=0 it is
easy to see that this suppresses the devil' s-
staircase phenomenon inherent in the original
model (1) and only a finite number of commen-
surate phases remains. However, due to the
exponential decrease of a, , at T = 2a20 only low-
order C phases are possible. Therefore, re-

! stricting ourselves to that temperature range,
the truncation of B„ is well justified, though high-
er terms will change somewhat the form of the
phase boundaries. (ii) We consider only 5 = —,'.
In the partition sum then we allow only the two
lowest-energy states of each nearest-neighbor
bond, i.e., n,-„,—n, , =0, 1, etc. This restric-
tion still allows the existence of C regions sepa-
rated by walls, i.e. , of the configurations which
have been shown to determine the critical be-
havior of the C-IC transitions in the continuum
models. ' " Therefore we do not expect the essen-
tial physics of the transition to be changed by
this restriction. The six allowed configurations
of the unit square of the lattice are shown in Fig.
l(a), where an arrow pointing right or upward
means increase of n;, by 1, whereas elsewhere
the n, „are constant.

We now turn each arrow by &/2, thus arriving
at the configurations of Fig. 1(b), which are
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those of the exactly solvable six-vertex model. "" In the notations of I.ieb and Wu" the energy param-
eters are

e, =2(a» —a, ,), e, =2a», h = —v =(a»+2a»)(1 —25) .
The phase diagram and critical behavior can be determined from the free energy per atom, obtained
for small fixed y = 2 (n,„,—n, , ) —1 as"' "

E(y) =E(0) —2vy —T[z'Iy I+ —,
' z"' Iy I']+o(y'),

Z'= —2-"(p), Z"'=6[~/:"'(p)]':-"(p), p= '(~+—9 )

at T & T, (exp[(2e, —e,)/T, ]—cosh(e, /T, ) =1),
where the functions =, A., and 0, are given in
terms of E'y 2 in Ref. 18. A similar expansion is
valid near y =+1.

In the thermodynamic limit only the value of y
minimizing E contributes to the partition sum. "
Thus the phase boundaries are given by 2v =+TZ'
(Fig. 2). The 1/1, 2/3, and 1/2 C phases cor-
respond to y = -1, 0, 1, respectively. Above T,
there is an IC (floating) solid phase. The transi-
tion at 6= —,', T=T, is of the KT type with an es-
sential singularity of the free energy. Near 6 = —,',
T, has a sharp spike of the form T, —T,~ [lnI 5
——,'I] '. Near 5=0, 1 our approximation (ii) be-
comes invalid. However, in analogy to 6= —,

' we
expect similar spikes of g„as drawn by dashed
lines in Fig. 2. Furthermore, inclusion of more
than next-nearest-neighbor couplings should
cause higher-order C phases to appear between
those of Fig. 2. For these phases a KT transi-
tion and a spike of T, (5) are expected at the cor
responding rational values of D.

Near the 2/3 phase the density of wa. lls is y/2,

I ne ar 1/1 and 1/2 it is (1 +y) /2 and (1 —y) /2, re-
spectively. Near the phase boundaries the wall
density is proportional to I 5 —6,(T) I

't', the
specific heat exponent is n = —,

' on the IC side,
and near T, the amplitude of this singularity
vanishes like (T, —T,) ' 'exp[ —const (T, —T,) ' '],
so that at 5 =

2 only an essential singularity of
the free energy is left. On the C side of the tran-
sition there are no critical divergences. These
results are in complete agreement with those of
the continuum model. " This equivalence may be
understood if we note that in both cases in the IC
phase there is a high number of possible low-
energy states of the domain walls.

We now consider a square symmetric substrate,
l.e.)

p= U, + W+ VP cos(2~[u, , —v, , + 6(i —j)]). (7)

The analysis is the same as above; however, be-
cause of the two periodic potentials, two sets of
integers fn;, ) and (m, , ) must be introduced,
and the energy functional is

H„= P a, f[n;„, —n„—5(1+m)]'+[m;„, -m;, —5(l+m)] ]+ g c, (h, , -h;;„,);
i,j,/, m i,j;l &m

h;;, =[n;„,, —n;; —5(l m)][m;„,, —m„- &(l-m)],

[(A + B)(Q„'+Q„') —4CQ„'Q, ' + 4p] exp[ia(lq +mq, )]
2N, (AQ„'+BQ '+2p)(AQ '+BQ„'+2p) —4(CQ„'Q, ')

p,
'

(A —B)(Q„'-Q„')exp[ia(lq„+mq, )]
V, (AQ„'+BQ„'+2p)(AQ„'+BQ„'+2p) —4(CQ„'Q, ')' '

(8a)

(8b)

(Sc)

The z, term describes the interaction between the n,-, and the ~i,. systems. To be consistent with ap-
proximation (i) we consider only the nearest-neighbor (c») coupling. As above, variables y, and y,
are introduced for the n and ~ systems, which for small y„y, give the density of walls in the two
space directions near the 2/3 phase. Expanding the partition sum at fixed y, gives

Z = exp[- —,'Pc,~(y, + 1 —25)(y, + 1 —25)]Z„{y,)Z (y, )

&&[1+'P'c»' Z &&*.»O-h*, oi-&hl, »-h~, od..){hi »-hanoi-&hi »-hi 00am&n~

Here N is the number of atoms in the system, Z„are the partition sums of the n and m systems for
c, =0, ( ~ ~ ~ ) „are the corresponding averages, and only second-order terms have been written out
explicitly. The correlation functions in Eq. (9) cannot be calculated directly for the discrete system;
however, at least the long-range behavior can be expected to be the same as in the continuum case,
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0 1 1 1 0 0 1 2 0 1 1

1 0 0 0 0 0 1 0 0 0 1

FIG. 1. The transformation from (a) H„, integers
show typical values ofn;; at the corners of the unit
square in the shown configuration, to {b) the six-vertex
model.

for which an explicit calculation is possible. "
These correlation functions have an algebraically
decaying part which represents the domain walls
of the IC phase and vanishes in the C phase (y,
=0 or y, =0). Therefore the contribution to Z
of this part has to vanish if y, =0 or y, =0. Es-
pecially, no terms proportional to y; can ap-
pear Acalculat. ion that uses the continuum
correlation functions shows that the second-order
term can be expanded in powers of the y, . The
lowest-order term is proportional to y, y, and
gives (for small c,c) only a small correction to
the y, y, term in the free energy coming from
the exponential prefactor in Eq. (9). In addition
there is an exponentially decaying part coming

1/2-h 1/2 1/2+6

FIG. 2. The phase diagram in the &-T plane l&=+&&/
(2Q ~p

+ 4Q
~ ~ )1 . Insets show the atomic arrangements

in the different C phases; straight lines indicate the
maxima of the substrate potential.

from the C regions of the system. This part does
not change nonanalytically through the C-IC tran-
sition, leading only to small corrections to the
coefficients in F(y„y,). The form of the higher-
order correlation functions implies that their
contribution may also be expanded in powers of
the y, . Therefore, to lowest order in c„we may
neglect the square bracket in Eq. (9). The higher-
order terms only change the coefficients of y,-

in F(y„y,), but no terms nonanalytic in y,. are
introduced. Thus the free energy is

F(, y, ) =F(y,)+F(y,)+—',c„(y,+1—26)(y, +1 —26), (10)

where F(y) is given by Eq. (6). Minimizing F(y„
y, ) shows that the C-IC transition may happen in
two different ways: (i) For c»&0, i.e., repulsion
between crossing walls, a second-order transi-
tion from the C to an uniaxial IC state (y, =O, y,
o0 or y, xO, y, =0) occurs for TZ'= ~v~[2+c»/(2a»
+4a»)]. The critical behavior of this transition
is the same as that in Eq. (6). At somewhat high-
er values of ~v~ or T a first order t-ransition into
an isotropic IC state (y, =y, ) occurs. (ii) For c»
&0 (wall attraction) the C-IC transition is first
order directly into the y, =y, state. In our model
the sign of c„is equal to the sign of A —B. Here
only small values of y, (2/3 state) have been con-
sidered; however, the same arguments apply
near the other C states of Fig. 2. Thus, all the
transition lines become either first order or are
split into a second-order and a first-order line.
The same two possibilities have been found by
Bak et al. ' in a T =0 theory.
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The chalcogen site in bulk glasses of GeSe& and GeS~ has been probed via nuclear quad-
rupole interactions with use of ~~~Te impurity atoms as parent in ~~I Mossbauer emis-
sion spectroscopy. Two distinct types of chalcogen sites are observed and are shown to
provide direct evidence for intrinsically broken chemical ordering in these network
glasses. The composition dependence of the site parameters in pseudobinary-alloy
glasses indicates the presence of characteristic large clusters rather than a continuous
random network.

PACS numbers: 61.16.-d, 61.40.Df, 76.80.+y

Nuclear quadrupole resonance (NQR) experi-
ments have recently provided detailed information
on the atomic structure of alloy network' and me-
tallic' glasses. The average electric field gradi-
ent (EFG) e V„and particularly the asymmetry
parameter 71= ~( V„„—V»)/V„~ of the EFG tensor
contain information characteristic of the atomic
environment which can be interpreted quantitative-
ly in terms of the same parameters in elemental
solids. However, the application of NQR to chal-
cogenide glasses is restricted because there are
no stable Se or Te isotopes that have a nonzero
nuclear quadrupole moment eQ in the ground state.
In this Letter we show that by means of a novel
technique, "'I Mossbauer emission spectroscopy,
very precise nuclear quadrupole interaction (NQI)
data are obtainable on chalcogen sites in these
covalent glasses.

The basic idea of this technique is to measure
the EFG, g, and electron charge density via the
NQI of daughter ""Inuclei at chalcogen sites by
doping pseudobinary alloys such as g-GeSe, „Te„

and g-GeS, „Te„with parent '"Te atoms. The
details of this technique and its application to ele-
mental chalcogen glasses have been given previ-
ously. ' Purified elements were sealed in evacu-
ated quartz ampules in stoichiometric ratios and
alloyed at 900'C for 24 h before quenching in cold
water. The glass transitions (T) of the g-GeSe, „-
Te„alloys were studied by differential scanning
calorimetry. The T results were in quantitative
agreement with the work of Sarrach, de Neufville,
and Haworth, 4 which indicated the absence of
phase separation in this alloy system. Figure 1
shows some of the Mossbauer spectra obtained.

The central discovery of the present work is
that in bulk melt-quenched alloy glasses of
GeSe, „Te„and GeS, „Te„even as x-0 there are
two inequivalent I sites A and B. For example,
as can be seen in Fig. 1, a qualitative improve-
ment in the fit to a g-GeS, spectrum results in
going from a one-site to a two-site fit. The NQI
parameters e'Q V„", e'Q V„s, q s, and q" for
GeSe, „Te„alloys are shown as a function of x in
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