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tial value when the Gelfand-Levitan equation from
the right is used.
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We show there is evidence that a method of summing important logarithmic corrections
which are significant in the large-x region leads to a superior description of deep-inelastic
scattering data (analyzed with use of the evolution equations). Next —to-leading-order cal-
culations can imitate the impact of this summation method, but at highx it appears that
there are higher-order and higher-twist corrections which separate those approaches.
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Considerable effort has been devoted to obtain
clean and quantitative predictions in quantum
chromodynamics (QCD) for various physical pro-
cesses. ' Among these, deep-inelastic processes
could, in principle, represent an excellent labo-
ratory for such tests. Although QCD predicts an
observable logarithmic violation of scaling for
the structure functions, there are difficulties
which have prevented a completely satisfactory
comparison between theory and experiment. '
Even when considering only the leading-twist con-
tributions in the operator-product expansion
(OPE) there are contributions of higher order in
n„ the running coupling constant. Also, the
summations ' of certain logarithmic terms (in mo-
ments they are characterized a,s n, 1n'n) leads to
large corrections in the x-1 region (x=Q'/2P q).

We use the evolution equations" to analyze the
impact of both second-order and x-1 corrections
to the deep-inelastic structure functions, and we
consider the relationship between them. We make
direct comparisons between theory and experi-

ment for both electron and neutrino deep-inelas-
tic scattering, using Stanford Linear Accelerator
Center-Massachusetts Institute of Technology
(SLAC-MIT)" and CERN-Dortmund-Heidelberg-
Saclay (CDHS)" collaboration data. We find that
there are dramatic indications in the data to sup-
port theoretical expectations.

Brodsky and Lepage' have observed that large
nonleading contributions to the structure func-
tions, which arise in the x-1 region because of
the gluon radiation corrections of the theory, "
are related to kinematical constraints. Analyz-
ing deep-inelastic scattering, they observed that
the use of the correct kinematic constraints plus
the correct argument of o., in evolution equations
introduces an additional term. For the moments
of the structure functions, this reproduces the
sum of the large n, ln'n corrections (which come
from the x -1 region). These corrections are
the same ones as computed with use of the opera-
tor-product expansion" to order n, . Similar
arguments have been developed by Parisi4 and by
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Curci and Greco. ' Amati etal. ,
' by analysis of

the strong-ordering contributions to the invariant
charge, have proposed a modified evolution equa-
tion which, because of the rescaled argument of
the running coupling constant, resums" the large
corrections. The proof that such a resummation
occurs has been given only at the leading-infra-
red-singularity level. The kinematics-dependent
scale in the coupling constant is given by the up-
per limit on the emitted-gluon invariant mass.
The modified leading-order evolution equation for
the structure functions (see Refs. 6 and 6) is then,
in the nonsinglet (NS) ease,

8Q', .~"(x,Q')

i'd ~Ns x
Q2 o'.(Q'(1-z)/z)~(

) (1)z' 2w

where E =(E,'~ F,'")-or xE,"". The + notation
indicates the regularization procedure (see Ref.
10). This equation sums the large logarithms

~,(Q'(1 —z)/z) =(4~/P. )[»g( i"/A')] ', (2)

where we define" P' —=Q'(1 —z)/z+ m-, with m a
free mass parameter acting as an infrared cutoff.
Such a definition, which leaves n, unchanged at
large values of the argument, makes it possible
to make a limited estimate of the sensitivity of
calculations to this region. " Use of this defini-
tion (with the parameter m') is equivalent to the
inclusion of higher-twist terms since

which arise when the real emission of gluons can-
not compensate for the large, opposite effects of
the virtual contributions.

The perturbative approach of Eq. (1) breaks
down for (1-z) ~Q,'/Q' [where Q,

' is a mass of
order 1 GeV' such that o., (Q,'}/2))(1]. The
structure function becomes of the quark form-
factor type and shows a Sudakov-type damping. '

Considering the new argument of n, in Eq. (1},
we see that as x becomes large and Q' is held
fixed, the running coupling constant becomes
large. In order to investigate this problem we
introduced the following definition" of e, :

1-~ z+m' ' ' 1 —z z ' ~ng

When we (later) make use of the second-order-in-o. ,(Q2} evolution equations, we follow the work of
Curci, Furmanski, and Petronzio" and write (using the MS renormalization scheme'):

~NS Q2 s(Q }~(1)( ) s (Q }~(2)( )z ' 2m' (2w)2 (4)

where P'" and P'" are defined in Ref. 18.
Now, turning to our results: What is the im-

pact of using the variable p' [=-Q'(1 - z)/z+ m']
instead of Q' in Eq. (1)? Clearly one expects to
find a lower value" of A. For the CDHS v data,
A decreases from A=0. 33 GeV for Q' evolution to
A=0. 20 GeV for V' evolution. For the SLAC data,
A=0. 66 GeV decreases to 0.43 GeV.

More important is the result that the data are
better described by V' evolution than by Q' evolu-
tion (first order). We find that the y' for fitting
data with V' evolution are noticeably better:
= 90.7 vs 93.3 for Q' evolution (for 76 degrees of
freedom) for neutrino data and y'= 62. 8 vs 67.8
(for 72 degrees of freedom) for electron data (y'
is very insensitive to the value of m).

This can be understood, in part, by noting that
whereas the first-order Q'-evolution equation
implies a fixed, constant value of A, the use of
this Q' evolution to extract A from the data re-
sults in a A which is dependent on x (see Fig. 1).
Such a contradiction is not found when V' evolu-
tion is used to extract A from the data; here we
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FIG. l. ~ extracted from SLAC-MIT (Ref. ll) and
CDHS (Ref. l2) data for F2 -E2" and xI 3 with use of
first-order Q evolution and with use of V evolution
with the data in large-x bins.
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find A consistent' within errors with being inde-
pendent of x (see Fig. 1). Because V' evolution
leads to a. constant A, the resulting global (all x)
fit to the data is superior to.that from the leading
order Q' approach.

How do results that use the evolution equation
calculated to second-order in o, ,(Q') compare
with those from leading-order Q' evolution? The
impact on the overall value of A is very small

(e.g. , A'" =0.33 GeV and A'" =0.35 GeV). How-
ever, the y' for second-order fits to the data are
somewhat better than for first order. The cause
of this improved fit is that (as for V' evolution)
use of second-order evolution, Eq. (4), to extract
A from data can give a A relatively independent
of x. That it is Possible for s. econd-order evolu-
tion to imitate the effects of V' evolution is easy
to see since Eq. (4) can be rewritten as

Q'(S/SQ')E '(x, Q') = I'«E '(x/~, Q')(, (Q'f4))&'"4)+o(,')),
By expanding in powers of ln(Q'/A'), one finds

[&'"( )»y( )],= [(4 /p. )&"'( )],+ I&"( )(p,/p, ')»»Q, /A'], .

(5)

(6)

Analogous arguments were presented in Refs. 8
and 9 in relating the A„scheme to other second-
order renormalization schemes. To see whether
this approximate equivalence does in fact occur,
we treated the output of the V'-evolution equation
(1) as "data, " and then checked the x dependence
of A extracted with use of the second-order evo-
lution equation (4). The results are shown in Fig.
2, where we also compare with the use of the
first-order Q -evolution equation. Clearly the
second-order equation (unlike the first-order
equation) is consistent with giving a constant A.
The fact that both methods simultaneously pro-
vide x-independent values for A confirms that the
Q'-evolution equation corrected to second order
can to some extent handle the essential kinematic
constraints as the V' evolution does.

How do curves from these different approaches
compare? In Fig. 3(a) we show (xE, ' —xE, '~)/

xE, 'i [which we found looks very similar to
(xE,~ i-xE, ")/xE, ~'~]. Large differences for

xI', in these approaches only occur for large x
(as expected) "The.fact that the differences in
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! Fig 3(b. ) are significant only at very large x may
indicate that the ability of the second-order equa-
tion to reproduce the impact of the V'-evolution
approach fails at these x values, so that the high-
er-order terms (third order and higher) are in-
creasingly important (and also higher-twist cor-
rections). " This is not unexpected since the sec-
ond-order equation cannot account for terms such
as o.,'(Q') ln'[1/(1-x)] and xypg'/Q'(I —x).

If one adjusts the V'-evolution parameters to
fit the second-order evolution curves, the best
fit has the parameter m'= 0.9 GeV' (close to m~'
=0.88). It is not possible to determine ~' from
the present data, since they are not precise
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FIG. 2. + extracted with use of first-order and
second-order Q evolution from theoretical data" cre-
ated from the output of the V -evolution equation. The
input value of & was 0.2 Gev. Below x =0.2, there is
little sensitivity to the value of &.

FIG. 3. The fractional differences between (a) second-
order and first-order-in-&~ (Q ) structure functions and

(b) the & -evolved and the second-order structure func-
tions obtained by use of the corresponding evolution
equations. The same x parametrizations were used in
all cases. In {b) the particular Q value at which the
high-x difference is (approximately) zero is not signifi-
cant; it varies with the choice of Qo (the starting point
of evolution) .
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enough at large x.
We believe that the analysis of the structure

functions via the evolution equations has clear
advantages over moment analyses. The integra-
tion over x needed to obtain moments requires
the extrapolation of data into unmeasured re-
gions. In doing moment analyses we found that
our results were critically sensitive to the na-
ture of the extrapolation.

In conclusion, the use of the modified evolution
equation (in terms of V') leads to clearly superi-'
or descriptions of the neutrino and electron data
(compared to that from leading-order Q' evolu-
tion). The second-order evolution equation (in
Q') can imitate the impact of the V'-evolution
equation (by making A roughly x independent).
However, at large x the two approaches diverge,
and one can hypothesize that it is the corrections
higher than second order in cx, and of higher-
twist type, inherent in the V' approach, which
distinguish them.

We feel that much could be learned from having
more data in the large-x region. Even for moder-
ate-x regions, use of the V'-evolution equations
for the analysis of data is indicated by our results.
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