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Two Distinct Local Potentials with No Bound States Can Have the Same
Scattering Operator: A Nonuniqueness in Inverse Spectral

Transformations
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By giving an explicit example in one dimension, it is shown that by relaxing a condition
on the ranges, at least two potentials can have the same scattering operator in some
cases. The two potentials are local and do not support point eigenvalues. The implica-
tions for solutions of the Kortevreg-de Vries ~ation are briefly discussed.
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One of the- principal assumptions in scattering
experiments is that such experiments will yield
the scattering potential. Hence it is important to
know the kinds of lack of uniqueness in the poten-
tial recovered from the scattering data. ln the
present note we give an explicit example of two
local potentials in the one-dimensional scattering
problem, neither of which supports point eigen-
values, which have the same scattering operator.
The present example is a new lack of uniqueness,
which differs from two previous types, the first
of which (Ref. l) is due to a lack of complete
specification of the spectral measure function of
the discrete spectrum, and the second of which
(Ref. 2) is due to the possibility of having nonlo-
cal potentials with the same scattering properties.
ln the present example the two potentials are lo-

cal and have no point spectrum so that the two
previous ambiguities play no role.

Consider the one-dimensional Schrodinger equa-
tion for continuous spectrum eigenfunctions,

[-d'/dx'+ V(x) ]P(x l k) =k'y(x l k)

(--«&-). (l)
We retluire the outgoing wave solutions of Etl. (l)
which are denoted by g(xl k, n), with k & 0 and o.'

They satisfy the boundary conditions

lim P(xl k, -) =e""+b(k)e
x~-~

lim p(xlk, -) =t(k)e' ",
X~ +oo

(2)
lim yolk, +) =e ""+c(k)e"",

lim y(xlk, +) =s(k)e "*.
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q(xl k) =e""+q(x)~
4ix 4i . 2x — coskx +—sinkx ——slnkx, (5a)k k k

The complex conjugate of this wave function is
also a solution of Eq. (1). Hence the outgoing
wave function which satisfies the boundary condi-
tions of Eq. (2) is a linear combination of p(xl k)
and $*(xl k). It is readily found that

b(k) =c(k) = . , t(k) = (5b)

As the second potential V, (x) we take

V.()=V,(- )

for which the wave function analogous to g(x'I k) of

Eq. (5a) is p(xlk) and is given by

cp(xlk) =(*(-xlk). (7)

By taking linear combinations as before, one ob-
tains the scattering coefficients of Eq. (5b).

In Ref s. 3 and 4 the direct and inverse problem
of one-dimensional scattering is discussed. Two
theorems of interest in the present discussion
state that, for potentials V(x) such that

f „ I V( )1(1+IxI)ax(-, (8)

(1) if the reflection coefficient is such that I b(0) I

=1, then b(0) = —1; (2) if there are no point eigen-
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Clearly n gives the direction of the incoming
wave. The quantities b(k) and t(k) are called the
reflection and transmission coefficients, respec-
tively, from the left and c(k) and s(k) are the cor-
responding quantities from the right. It is shown
in many places (see Ref. 3, for example) that
s(k) =t(k) and that the matrix

t (k) c(k))
S(k) =

b(k) t(k)f

which is called the scattering operator, is uni-
tary.

The principal point of the present note is to give
two potentials Y,(x) and V, (x) which have the same
scattering operator. Let the potential V, (x) be
given by

V, ( ) =-25( ) +8q( )
(

1

where q(x) is the Heaviside function, q(x) =1 for
x) 0 and q(x) =0 for x - 0. It is readily seen that
the function P(x I k) satisfies the Schrodinger
equation (1) with Y(x}=V, (x), where

values, b(k) determines V(x) uniquely. One might
think that condition Eq. (8) could be weakened and
that the uniqueness theorem might still hold. To
break condition (8) we chose a b(k) such that b (0)
=1, namely that of Eq. (5b). We then used the in-
verse scattering method of Ref. 5 with the Gel-
fand-Levitan equation from the left to obtain
V, (x). This potential violates the condition Eq.
(8) because of Theorem 1, though strictly speak-
ing I V, (x) I can be given only in a heuristic sense
because of the presence of the 6 function, i.e.,

I V, (x)l =2&(x)+8@(x)(2X+1) '. The condition Eq.
(8) fails, not because of the 5 function in V, (x),
but because V, (x) has a long tail and the integral
of Eq. (8) diverges logarithmically for large x.
A similar situation holds for other examples to
be given in later papers where no 6 function ap-
pears and I V(x)l has a proper meaning. !One of
our objectives was to see whether a meaningful
V, (x) could be found at all. The result shows that
a scattering potential is indeed obtained. ] To ob-
tain V, (x) we used the Geifand-Levitan equation
from the right with the reflection coefficient c(k).
The functions p(xl k) and y(x I k) are the Jost wave
functions, respectively, for the left and right Gel-
fand- Levitan equations.

One of the peculiarities of V, (x) and V, (x) is
that the reflection coefficients from both sides
are equal, though these potentials are not sym-
metric. Thus, while a sufficient condition for the
equality of b(k) and c(k) is that the potential be
symmetric, the present example shows that the
condition is not necessary. One might conjecture
that whenever b(0) =1, then b(k) =c(k) ~ That this
is not true in general is proved by a counterex-
ample to be given in a later paper.

It should be noted that the Gelfand-Levitan equa-
tions mentioned in this note are solved by a gen-
eralization of the method of Ref. 6.

The lack of uniqueness of the potential with re-
spect to a scattering operator leads to some ques-
tions about the uniqueness of the solution of the
Korteweg-de Vries equation. Assume that the
solution V(x, t) of the Korteweg-de Vries equation
at time t =0 were V, (x), say, of our present ex-
ample. The reflection coefficient b(k) determines
the future solution V (x, t) through the use of the
Gelfand-Levitan formalism as described in Ref.
7. However, V, (x) has the same scattering opera-
tor and the same reflection coefficient b(k). Which
initial is being used by the method of Ref. 7,
V, (x) or V, (x)'? Probably the use of the Gelfand-
Levitan equation from the left uses Y,(x) as the
initial function V(x, 0), whereas V, (x) is the ini-
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tial value when the Gelfand-Levitan equation from
the right is used.
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We show there is evidence that a method of summing important logarithmic corrections
which are significant in the large-x region leads to a superior description of deep-inelastic
scattering data (analyzed with use of the evolution equations). Next —to-leading-order cal-
culations can imitate the impact of this summation method, but at highx it appears that
there are higher-order and higher-twist corrections which separate those approaches.
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Considerable effort has been devoted to obtain
clean and quantitative predictions in quantum
chromodynamics (QCD) for various physical pro-
cesses. ' Among these, deep-inelastic processes
could, in principle, represent an excellent labo-
ratory for such tests. Although QCD predicts an
observable logarithmic violation of scaling for
the structure functions, there are difficulties
which have prevented a completely satisfactory
comparison between theory and experiment. '
Even when considering only the leading-twist con-
tributions in the operator-product expansion
(OPE) there are contributions of higher order in
n„ the running coupling constant. Also, the
summations ' of certain logarithmic terms (in mo-
ments they are characterized a,s n, 1n'n) leads to
large corrections in the x-1 region (x=Q'/2P q).

We use the evolution equations" to analyze the
impact of both second-order and x-1 corrections
to the deep-inelastic structure functions, and we
consider the relationship between them. We make
direct comparisons between theory and experi-

ment for both electron and neutrino deep-inelas-
tic scattering, using Stanford Linear Accelerator
Center-Massachusetts Institute of Technology
(SLAC-MIT)" and CERN-Dortmund-Heidelberg-
Saclay (CDHS)" collaboration data. We find that
there are dramatic indications in the data to sup-
port theoretical expectations.

Brodsky and Lepage' have observed that large
nonleading contributions to the structure func-
tions, which arise in the x-1 region because of
the gluon radiation corrections of the theory, "
are related to kinematical constraints. Analyz-
ing deep-inelastic scattering, they observed that
the use of the correct kinematic constraints plus
the correct argument of o., in evolution equations
introduces an additional term. For the moments
of the structure functions, this reproduces the
sum of the large n, ln'n corrections (which come
from the x -1 region). These corrections are
the same ones as computed with use of the opera-
tor-product expansion" to order n, . Similar
arguments have been developed by Parisi4 and by
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