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A model of a disordered planar model is introduced and solved with use of the replica
method. The model is designed to mimic the inhomogeneities known to exist in heIium and
granular superconducting films. The results indicate that at onset, the universal results,
predicted on the basis of renormalization-group analysis, hold to lowest order in the
parameter measuring the disorder. The disorder has the important effect of increasing
the vortex pairs couplings, resulting in. an initial increase of the critical temperature.
Possible consequences of the results to related experiments are also presented.

PACS numbers: 67.40.Rp, 74.50.+r, 75.40.-s

The understanding of superfluidity in two-di-
mensional (2D) systems has been rapidly expand-
ing in the last few years, from the seminal pa-
pers by Kosterlitz and Thouless (KT)' and Bere-
zinskii, to the specific'4 predictions by Nelson
and Kosterlitz (NK). ' There have been several
experiments on helium films by Bishop and Rep-
py,

'
by Rudnick, ' by Telschom and Hallock, ' and

by Webster, Webster, and Chester' that have
tested the NK prediction. Also recent experi-
ments in superconducting films have been inter-
preted in terms of the KT theory. ' In spite of
this success, there is still some controversy on
the interpretation of the experimental results. In
particular, Dash' has argued strongly that the
He experiments were done on substrates that are

far from homogeneous, such that what has actual-
ly been me'asured is not genuine 2D superfluidity.
Dash further says that even if the substrate was
flat, the films themselves would not be uniform.
The same criticism applies to the experiments
done in superconducting films: The materials
used in these experiments are either granular or
amorphous.

In this communication a model of a disordered
planar model is introduced and solved with use of
the replica method. ' The model is thought to
mimic a granular superconductor or an inhomo-
geneous He film. The language of the supercon-

ductors will be used throughout while having in
mind that the same model applies to the helium
case.

Granular superconductors consist of metallic
grains embedded in an insulating matrix. At high
temperatures the grains are essentially decoup-
led from each other. When lowering the temper-
ature the grains interact via a Josephson coup-
ling that can lead to long-range correlations.
This has led several authors to write the Ham-
iltonian of a granular superconductor at low tem-
peratures as a ferromagnetic planar model"

H/k, T = g Z,p cos(8, —9, ,), (1)
r, r

where k~ is the Boltzmann constant (set to 1 from
now on) and T is the temperature. The variable
J, -, is related to the Josephson coupling between
grains. Early approximations" took J-, , as a
nearest-neighbor (nn) constant. However, in a
more realistic model J, -, . is a random variable
arising from the nonuniform size and shape dis-
tribution of the grains. Here J, , will be taken
as a nn independent random variable (irv). The
justification for taking J. .. as a nn variable is
similar in spirit to that given by Edwards and An-
derson to justify their model for a spin-glass. '
Start by defining J. .. as

J. ..=J, exp(- z-, -, ,).
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H/T =P J, cos(8-, —8-„,+iz-, -„,). (4)

This Hamiltonian is strictly valid in the limit
when x is small. At low temperatures it is con-
venient to take the Villain approximation of Eq.
(4), giving

Here z, , is a positive real irv with normalized
probability distribution

P(z-, -, ) = (2/x~)'"8(z-, -, ,) exp(-z-, -, '/2x), (3)

and 8 is the Heaviside step function. J, is the
maximum value allowed to J, , The physical
meaning of x is clear: When x is large the grains
are weakly coupled, and if x is small the value of
J, , fluctuates around Jo. x is a parameter that
can be varied experimentally, in principle. In
this paper the limit when x is small will be con-
sidered. It is easy to show that the probability
law for J, , i is of the log-normal form. This type
of probability law has been shown to be universal
in H3 quantum random problems, for which the
scaling variable is ln(J. ../J, )."

Substituting Eq. (1) into Eq. (2) it follows

the average with respect to P(z, -,+,) a Gaussian
Hamiltonian will be mapped into a Gaussian Ham-
iltonian with renormalized coupling constants.
This is in contrast to the usual replica-method
calculations that, after configurational averag-
ing, generate higher-order terms. This simplifi-
cation allows to solve the model explicitly.

The quenched free energy is

(F/T).
=- f d(P(z))lnfd(8, m)e "&'

where 8% [0,2&] and m= 0, + 1, ~ 2, . . . . The con-
figurational average in Eq. (6) is performed with
use of the replica method, '

(F/T).
= —lim[(l/n) fd(z)8(z) fd(U)e" ~" ] (7.)

n~O

To simplify the notation, the n-vector U= (U',
U', . . . , U") has been defined with components U,
= (8, "—8,+,~+2zm, , +,"), and the meaning of the
measure d(U) follows from the one given above.
The effective Hamiltonian H(U, z) reads

'I

= ——,'P J,(8-, —8-„, +2vm-, -„,+iz-, -„,)', (5)
SI(U,z)

n

=--.'J, g [U" +2iz, U~]-(1/2 )[z,z]. (8)
with i =v'- 1 and m, ,+, is the integer dynamic link
variable for the vortex excitations. The differ-
ence between this Hamiltonian and the pure case
Hamiltonian is the addition of an imaginary con-
tinuous independent random gauge variable. Equa-
tions (3) and (5) define the model to be studied in
this paper. The Hamiltonian is a good approxi-
mation up to TK~. As usual we are interested in
taking the quenched average with respect to Eq.
(3). The importance in writing the model in this
way is that the randomness has been removed
from the coupling to a link variable. From the
technical point of view, it means that when taking

The brackets stand for the scalar product de-
fined as [a, b]=-ga, ,+, b, ,+,. The variable x' is
equal to

x =x/(1 - n J,x). (9)

It is clear from Eq. (9) that Eq. (8) will lead to
sensible results only for positive values of x'.
This means for values of the temperature J, '
&nx. If J, '»nx, thenx'-x and, when J, '-x'n,
it corresponds to the limit x'- ~. The integral
over z is computed, taking into account the 0-
function constraint, and after some algebra, (F),
becomes

(F/T), = - limn 'fd(U}exp(- —,J,P Q [U R„8,U8]),
n~0 n 8

with the n&n matrix

R„s = 5„8+ c(x' )Jox'S„B.

(10)

5 z is the unit matrix and S z has all its entries equal to l. Equation (10) was obtained in the limits
when x'-~ and x'-x, the only difference being the constant c(x'- ~) = 1 and c(x'-x) = —,'. c = 1 will be
taken from now on, without changing the qualitative nature of the results. Also, logarithmic correc-
tions to the Hamiltonian in Eq. (10) have been neglected, The orthogonal transformation U" =QzT z"UB,
such that+~, T "R~,TS'=X&„~5 z, reduces Eq. (10) to

(F/T), = —limn ' fd(U) exp(- 2J,Q X& &[U, U"]). (12)
n~O
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The Jacobian of the orthogonal transformation
leaves the volume element invariant. It is easy
to diagonalize Eq. (11). There are two types of
eigenvalues. g, = 1+@A,x' and g, = 1. The first
has degeneracy of 1; and the second, of n —1.
This result leads immediately to

= —limn '(Jd(U )exp(-2Z, [U', U ]))" (13)

in which the renormalized coupling

J'0 =Jo[1+J~/(1 —nxJ0)]. (14)

Equation (13) indicates that the random problem
has been mapped into a nonrandom problem, with
the renormalized coupling constant J, dependent
on the disorder parameter x. Note that when x- 0 the model reduces to the pure case, as it
should. This somewhat unexpected mapping can
be traced back to the way in which disorder was
introduced in the model. Moreover, it follows
from Eq. (14) that disorder has the effect of pro-
ducing a stronger coupling when the temperature
is lowered; more discussion on the physics of
this fact will be given at the end of this communi-
cation.

Borrowing from the mell-known results for the
periodic case,"the recursion relations for this
problem can be written at once in the limit when
n-0. The renormalized vortex pair density is
given by

y(x)-exp [- (v'/2) J',(1+J,x)]. (15)

It follows from the recursion relations that the
critical temperature as a function of x is"

The increment in the critical temperature with
disorder x, for sma11 x, can be understood in the
following way: x gives a measure of the width of
the probability for J, , „.When x increases,
(J-, -„,j become, on the average , weaker . but the
effective J', (x) increases. J', measures the
strength of the interaction between renormalized
vortex pairs, and the temperature for the unbind-
ing of the vortices has to be higher. The de-
crease in the vortex density with disorder is due
to the potential barrier for the nucleation of the
vortices because of the anisotropy field created
by the random J's.

An immediate consequence from Eq. (13) is the
invariance of the Nelson-Kosterlitz universality
prediction when introducing disorder. NK pointed
out that the ratio p„(TKT)/TKT is equal to a uni-

versal constant, with p the superfluid density.
Here it is clear that, although TKT changes, the
ratio p(TKT(x))/T„T(x) is equal to the same con-
stant. Note that this statement is strongly depen-
dent on having mapped the problem onto an equi-
valent planar model that leads to the same type
of scale-invariant recursion relations. As a by-
product, the value of the critical exponent
q(TKT(x)) remains equal to —,'.

The above discussion has centered around T KT
where the effects of disorder are quantitative but
not qualitative. However, when lowering the tem-
perature it is seen from Eq. (15) that the vortex
density is reduced by the presence of disorder.
Although some of these results are in agreement
with the Harris criteria, "the special nature of
the phase transition in the planar model requires
an explicit treatment of the effects of disorder in
this model. In particular, the initial increase of
TKT with x is unusual.

The KT theory when applied to superconductors
consists of two separate parts. " On the one hand
it is the determination of TKT and the proof of the
universality relation for p(T„T)/T„T, and on the
other the connection to the superconducting tran-
sition temperature TBcs, which is a parameter
to be fed into the theory. Experimentally what is
measured is the ratio T„T/T ~ c, as a function of
sheet resistance per square, R&. In the experi-
mental results reported by Beasley, Mooij, and
Orlando" and Hebard and Vanderberg, the decay
of TKT/T~cs as a function of R& is much slower
than the one predicted by the equation of Beasley,
Mooij, and Orlando. Here we notice that [T„T(x)/
T Bcs])[TK~(0)/T Bcs], which would seem to be in
qualitative agreement with having a slower decay.
Note, however, that the region of validity of the
calculation presented in this paper corresponds
to having small R& for which detailed experi-
ments are yet to be done. Also, in the limit
when R &13 kA, quantum effects may come into
play. '4

In summary, a simple model of a random pla-
nar model has been introduced and solved for
small disorder. The model is believed to repre-
sent the situation encountered in inhomogeneous
helium films and granular superconductors. The
solution yields further support to the interpreta-
tion of recent experiments' in terms of the Kos-
terlitz-Thouless mechanism. Away from TK»
however, it is found that having disorder limits
the spontaneous nucleation of vortex pairs, as
well as making their coupling stronger. The lim-
its of applicability of the approximate model con-
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sidered here are not well understood at present.
However, it is possible to argue that the effects
of disorder may in fact have helped in the suc-
cess of the experiments by reducing the devia-
tions from the Gaussian approximation inherent
in the KT theory.

The analysis presented here is purely static
and may be dependent on the particular way that
disorder was introduced, but the universality of
the results should persist. It is possible that
some of the discrepancies that still remain be-
tween theory and experiment are due to disorder.
The details of the calculations in this paper as
well as other studies of disorder in the planar
model can be found elsewhere. ""
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