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The zero on the g scale corresponds to the [1101
direction lying on the diffraction plane.

P. B. Hirsch and G. N. Ramachandran, Acta Crystal-
logr. 3, 187 (1950).

In electron diffraction, virtural Bragg scattering"
is a common occurrence and must be always taken into

account in quantitative experiments. See, for example,
F. Fujimoto, J. Phys. Soc. Jpn. 15, 1022 (1960), on the
(222) reflection in silicon.

The need of using a dynamical N-beam diffraction
theory for imperfect crystals was pointed out by
M. Kuriyama, Acta Crystallogr. Sect. A 25, 56 (1969).
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The domain-coarsening kinetics of ordering systems with p-fold —degenerate equilibri-
um states, quenched from high temperatures, is analyzed. For long times (t) and low
temperatures, the domain sizes equilibrate as a power law in t for p & d + 1 and as a
logarithmic function of t for p ~ d + 1, where d is the spatial dimensionality of the system.
The relation of these slowly equilibrating, kinetically disordered systems to glasses and
suggestions for simulations and experiments are discussed.

PACS numbers: 64.60.My, 05.70.Fh, 81.30.Fb

The structures of charge-density-wave sys-
tems, ' adsorbed atoms on surfaces, ' some inter-
calation compounds, ' ordering alloys, ' and anti-
ferromagnets" are all characterized by a dis-
crete number of low-temperature phases which
are thermodynamically degenerate. For example,
certain ordered phases of rare-gas atoms on the
surface of Grafoil consist of three equivalent sub-
lattices (degeneracy p =3), whose thermodynamics
is derived from a Hamiltonian of the three-state
Pot'ts model. ' Recent Monte Carlo calculations of
the approach to equilibrium of ordering alloys and
magnets quenched from high temperatures have
indicated that, for spatial dimensionality d =3,
systems with twofold-degenerate low-temperature
equilibrium phases (p=2) do approach equilibrium
as expected, with large domains of equivalent
phases. ' However, the four-state antiferromag-
netic Potts model' in d =3, as well as ' the three-
state ferromagnetic Potts model (p =3) for d =2,
has been reported' to maintain some of their
quenched-in disorder for quenches from high to
low temperatures. This phenomenon is reminis-
cent of descriptions of glasses" and is in agree-
ment with a discussion by Lifshitz" of the diffi-
culty of equilibrating systems with p - d +1.

This paper is a first step in establishing a quan-
titative basis for this suggestion by Lifshitz, "
using a time'-dependent Ginzburg-Landau ap-
proach' '" to calculate the domain-growth rate
for various values of d and P. The equilibration

of systems with p -d+1 is shown to be frustrated
and hence characterized by a domain size which
grows only logarithmically in time. While some
of the arguments given here are independent of
the details of any particular system, it is useful
to consider a specific model. For example, the
three-state Potts model" represents a system
where each lattice site is characterized by a spin
which can have three possible values. The order
parameter consists of an amplitude p and a phase

For fixed p, the free energy is minimized by
uniform, degenerate phases with q =0 and + 72m

representing the three possible spin values. For
long times after a quench from a high-tempera-
ture (T) disordered phase (p =0), it is expected
that the system is uniformly characterized by its
equilibrium value of p, (T) and by a spatially non-
uniform q(r), describing the arrangement of
microdomains whose characteristic size is much
greater than that of a lattice constant, but much
smaller than that of the sample. "

For uniform p =po(T), the free-energy density
E(r) can be written" in a continuum approximation
as

F, —&b cos3q p,'+~cp, '~Vq~',

where b and d are positive constants and where
E, is the free energy of the uniform, single-do-
main system. Rescaling the energy by bpo', the
length by (c/bpo)' ', and generalizing to P-fold-
degenerate systems, the time dependence of g is
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related to the excess free e-nergy density f(r) ~

[F(r) ~ (r)]/yp 3 by12~ 13

Bq/Bt = —r 5f/5q = —I'(- v2q+Bv/Bq), (2)

where I' is a constant and V(q) = v[1 —cos(pq)].
After the initial equilibration of p, the system

consists of domains of @=0, 2&/p, .. ., 2&(p —1)/p.
In any given region, equilibrium is reached by
the shrinking of some domains and a consequent
growth of others. The coarsening process is
analyzed here by examining the time evolution of
a single domain of one value of q, surrounded by
an infinite matrix of domains of the other p —1
values of q (Figs. 1 —4). The angles between the
domain walls are assumed [this is demonstrated
in (iii) below] to have reached their equilibrium
values at the late times of interest here. The ap-
proach to equilibrium is then analyzed by calcula-
tions of the growth or shrinking of the domain
size L.

In the limit of highly localized domain walls, it
can be argued from Figs. 1(a) and 1(b) that for
d =1 and p) 2, there is no change in the free en-
ergy when L is infinitesimally changed (L =L,
+&L) since two walls still exist. On the other
hand, for p =2 and d =2 ord =3, the change in the
free energy is proportional to Lo ' which pro-
vides a driving force for the shrinking of the
minority domain. For d =2 and p =3, the shrink-
ing of domainA in Fig. 4 results in a reduction
of the perimeter of the domainA by 6~L. How-
ever, at the same time, the walls separating do-
mains B and C increase in length by 6bL, thus
preventing the system from either shrinking or
growing the A phase and proceeding to equilibri-
um. Similar arguments, "applied to d =3, show
that structures with p - 3 reduce the net domain-
wall area by shrinking the minority domain, while

v(q) = ~~q', ~/p (q (~/p,

V (v+2~/p) = V (n).

(4a)

(4b)

(i) d = 1; p = 2, 3: The t = 0 configuration shown
in Fig. 1(a) is obtained from the time-independent
solution of Eq. (2) for a potential V(q) similar to
that of Eti. (4), but with a term which breaks the
symmetry between the degenerate phases, " so
that

q, =p& exp[- (x' —L,)], x) L„
qo =& —&& coshyx/coshyL» 0- x( Lo, (5b)

where q, is symmetric about x = 0 and y tanh yL,
=1. For large I„the free energy is lower than
the free energy for Lo- ~ by a term proportional
to exp(- 2L,), representing an attractive interac-
tion between the two domain walls. A short time
4t later, Etl. (3) [with the true degenerate poten-
tial of Etl. (4)] indicates that, for x(L„

n(x, &t) = q, (x) I I.,-...~„
where AL = —4r &t exp(- 2L ). Letting q(x, t)
evolve in this manner, it is found that the effec-
tive length of the minority domain shrinks as

(6)

L =Lo+~ in[1 —8I' exp(- 2L,D)t].

systems with p ) 4 show no change in energy for
small changes in L.

To see the effects of the delocalization of the
domain walls and to calculate the time depen-
dence of the shrinking/coarsening process, Etl.
(2) is used. If at time t =0 the domain configura-
tion is given by q =q, (r), then a short time & t
later, g =g, +&g, where

~q-— r-t t(BV/Bq, V2—q,).
In the following, &q and L(t) are calculated ex-
plicity for several cases (valves of p and d), in
the approximation" that V(q) in Etl. (2) is given by
a periodic, truncated parabola
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For the configuration of Fig. 1(b) (d =1 and p =3),
a similar analysis shows that the minority do-
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FIG. 1. One-dimensional domains (calculated for
I'p = 5), (a) P = 2; a domain (A) of gp —+ surrounded
by domains (B) of pp —0, (b) P = 3; a domain (A.) of
pp —0 surrounded by domain (B) of &jp = 3& and a domain
(t") of q = -—~.

1582

FIG. 2. Two-dimensional domains for P = 2 showing
the locus of Tjp

= && separating the (rjo ——0) region A
from the (qp

-—7t) region B.
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main grows as in Eq. (7) but with I'- —I'. This
corresponds to a repulsive interaction between
the domain walls.

(ii) d =2, 3;P =2: For the configuration of Fig.
2, q, is calculated as in (i) and for d =2,

n. = ~~1,(rr) ll, (rL,), r - I.„
q, =v —p~K, (r)/K, (L,), r & L„

(8a)

(8b)

where k''=1+4', with similar expressions for g
in the other three quadrants. For an initial un-
stable configuration q, (x,y) =q(x —ey, y) shown by
the dashed line in Fig. 3, Eq. (3) indicates that
for short times and to first order in &, &g
=+ ~ At(&/2u)"'e ", where u y and the positive
sign applies for x -&y =0, andu =x —&y and the
negative sign applies for y =0. This corresponds
to an exponential repulsion between the walls. For
x,y «1, a similar analysis shows that there is an
even stronger repulsion between the walls with
&q proportional to x '

(y ') along the lines y =0
(x —&y =0),"tending to fix the angles between the
walls at ~& as claimed above.

where I, and K, are the Bessel functions of im-
aginary arguments and y = 1+1/Lo. Near the
wall (r = L ), Eq. (6) again applies but with aL
= —41' b.t/L, and for both d =2 and d =3 L(t) = [I.,'

21't(y 1)]li2 4gll ~ 15

(iii) d =2;p =4: Although the configuration shown

by the solid lines in Fig. 3 is metastable —i.e.,
5E/bg =0—it is useful to study the response of
this configuration to perturbations, in order to
determine the nature of the interactions between
the domain walls.

For the model potential [Eq. (4)] with d =2, a
solution of &F/&q =0 which describes four infinite
domains with g=0, ~&, 7t, and ~r is given for
x&0, y) 0, by

q =Tf dkk '[sin(kx)e ' —sin(ky)e ""], (9)

(iv) d =2;P =3: For the configuration of Fig. 4,
the previous analysis suggests that there exists
an exponential repulsive interaction between any
given wall (A, B) or (4, C) and its nearest neigh-
bors [see (i)1. That this interaction persists for
walls at angles to each other was demonstrated
in (iii). The weak repulsion between walls (A, B)
and (B,C) as well as the weak attraction between
walls (A, B) both tend to shrink domain 4 with a
logarithmically slow equilibration as discussed
above [Eq. (7)] 5

Although more quantitative calculations of L(t)
for p & 2 and d & 2 are clearly needed, the present
work predicts a slow, logarithmic equilibration
of the domains for P -4+1. For a system with an
initial distribution of domain sizes and arrange-
ments, this results in an effective freezing-in of
the late time (p equilibrated) structure. These
systems are thus simple examples of the forma-
tion of an amorphous or glassy structure due to
the slow growth of domains, which are prevented
from equilibrating by the other degrees of free-
dom in the system, "in qualitative agreement
with the Monte Carlo results. '

Recent simulations of the four-state antiferro-
magnetic Potts model for d =3 have resulted in
glass formation for quenches from high (T» T,)
to low (T «T,) temperatures, where T, is the
critical temperature. ' On the other hand, equi-
librium M as attained for quenches to tempera-
tures exceeding about &T„suggesting the exis-
tence of a glass transition temperature (T*). In
the present work, the only temperature depen-
dence lies in the scaling of the lengths by the tem-
perature-dependent factor (c/dp, )"'. Since po(T)
decreases as the temperature increases, this re-
sults in a larger coefficient of the time I; in Eq.
(7). However, extensions of these calculations
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FIG. 3. Domains for d = 2 and P = 4. The solid line
is the metastable wall configuration, where the line
between domains A and B is g = g&, the line separating
domains B and C is g = 4&, the line between domains
C and D is g = &57t, etc. The dashed line represents
the initial wall configuration (gp — 4&) discussed in
the text.

FIG. 4. Domains for d= 2 and P = 3. The solid line
is the wall 'Qp = & separating the domains B and C with
'Qp —37t and Qp

——3&, respectively. The dashed line
is the locus of gp

=
~3 separating domain A with gp

= 0 from domain B, while the dot-dashed line is pp
= —3' separating regions A. and C.
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are necessary to determine whether it is the sim-
ple length scaling, thermal fluctuations, or the
simultaneous equilibration of both the amplitude
and the phase of the order parameter that is re-
sponsible for the qualitatively different kinetics
for T)T*. Furthermore, it is not yet clear
whether the simple free energy of Eg. (1), ap-
plicable to the ferromagnetic Potts model, "'
can also be used to analyze the dynamics of the
antiferromagnetic systems' which have the com-
plication of infinitely degenerate ground states.
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A low-symmetry low-energy-electron-diffraction pattern observed at a fractional
nitrogen-adatom coverage of 0.4 monolayer on W{001) is attributed to a structure com-
posed of islands in which the surface-layer tungsten atoms are displaced to produce a
contracted interatomic spacing. The model correlates well with other published data
for this system.

PACS numbers: 68.20.+t, 61.14.Hg

Extensive studies of the clean" and hydrogen-
covered'4 W(001) surface have revealed that the
tungsten atoms in this surface readily undergo
small static lateral displacements from their
high-symmetry bulk positions. All previous stud-
ies of nitrogen chemisorbed on W(001j have been
interpreted without regard to possible substrate-
surface-atom displacement. ' ' Thus Adams and
Germer' (hereafter AG), in the most detailed

structural study of this system to date, concluded
that nitrogen adatoms occupy alternate undistort-
ed fourfold-symmetric hollow sties, and attribut-
ed the observed splitting of the half-order diffrac-
tion beams at intermediate coverages to changes
in average island or domain size and shape, with
antiphase boundaries between domains.

In the coverage range 0.3 (0 &0.4, careful ob-
servation of the low-energy-electron-diffraction
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