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Virtual Bragg Scattering: A Practical Solution to the Phase Problem in Diffraction
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(Received 16 March 1981)

It is found that appreciable multibeam effects are observable even when the Ewald
sphere is quite far from any extra node in reciprocal space. It is proposed to use these
effects for phase identification in mosaic crystals.

PACS numbers: 61.10.Dp, 61.10.Fr

It is a well recognized fact that in any scattering
experiment the phase of the scattered radiation is
lost, because in general the source is spatially
incoherent and the detector is phase insensitive.
Such is the case of Bragg diffraction from crys-
tals, and constitutes the essence of what is nor-
mally called “the phase problem” in crystallogra-
phy. In reality there are mathematical methods
for extracting phases from a large number of re-
flections, but we still talk about a “phase problem”
in the sense that we do not have a piysical method
capable of providing divect phase information,
based on some principle in which the phase of a
given reflection plays a basic recognizable role.

One sgituation in which the outcome of the experi-
ment depends on the relative phases of two or
more reflections is when several Bragg reflec-
tions are excited simultaneously. It has been
recognized for a long time that in this situation,
ordinarily referred to as N-beam diffraction, the
phases are not lost and can be recovered, at
least in principle.'? It has been shown, for ex-
ample, how phase effects can be unraveled from
Pendelldsung fringes deformed by three-beam
diffraction.®* There are, however, practical dif-
ficulties, and the progress has been, so far,
rather limited.

A convenient geometry for studying N-beam ef-
fects is the symmetric Bragg case of diffraction
(Fig. 1), in which a crystal, cut parallel to a set
of (hkl) planes, is diffracting an incident mono-
chromatic x-ray beam, and at the same time is
slowly rotated around the scattering vector, so
as to excite other reflections (#’%k’1’) for which
Bragg’s law is also satisfied. If the “primary”
reflection is weak, as is the case of the (222) for-
bidden reflection in silicon, or germanium, for
example, strong variations are observed in the
(222) intensity as a function of the azimuthal
angle ¢. The process which leads to these in-
tensity fluctuations is called “Umweganregung”
(detour radiation, abbreviated hereafter as um-
weg) and has been investigated in detail, from the
kinematic point of view, by Cole, Chambers, and
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Dunn® in 1962, An effort to tackle the phase prob-
lem with use of the information contained in an
umweg pattern was attempted by one of us (R.C.).°
The general problem of N-beam diffraction in the
Bragg case was solved in Ref, 5 and computation-
al procedures were developed for calculating in-
tensity profiles of umweg patterns, with excellent
agreement between theory and experiment.

More recently a different method, again based
on the general idea of N-beam diffraction, has
been proposed,® in which a divergent-beam tech-
nique is used to generate diffracted lines on film,
The crystal is set for diffraction in the Laue case,
and phase information is extracted from anoma-
lies due to N-beam effects.

Most crystals for which a real “phase problem”
exists are far from being perfect, and it is not
clear to what extent the methods described in
Refs. 5 and 6 are applicable to mosaic crystals.
Yet, multiple-beam effects are visible even in
mosaic crystals, and within each mosaic grain
the diffraction process is dynamic, and the phase
information is preserved.

We want to propose in this paper a new method
of attack to the phase problem based on the idea
of “virtual Bragg diffraction.”

The idea is basically the same as that described
in Ref. 5, namely the umweg pattern is used as a

Si -
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FIG. 1. Geometry of the experimental setup. The x-
ray beam is monochromatized by a perfect flat crystal.
The (222)-diffracted beam intensity varies as the crystal
is rotated around the scattering vector, signaling the
crossing of the Ewald sphere by reciprocal-lattice
nodes.
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source of phase information. Except that we do
not consider the peak values of the umweg peaks,
but confine our attention to the tails of the peaks
observed in azimuthal scans. In other words,
while the “primary” reflection [say, the (222) re-
flection] is always fully excited, we consider as a
source of phase information the small perturba-
tions observed in azimuthal scans when the Ewald
sphere is approaching one or two extra nodes in
reciprocal space.

It has been observed in our laboratory that ap-
preciable perturbations of the two-beam intensity,
of the order of 5%, can be observed in azimuthal
scans even when the angle ¢ is 2° off the value
required for full excitation of one or more extra
reflections. In this situation we introduce the
notion of virtual Bragg scattering to point out the
fact that the main reflection [for example, the
(222) reflection in silicon] is perturbed by other
Bragg reflections that cannot be excited because
energy conservation would be violated. Figure 2
shows the experimental results along with our N-
beam computations, A monochromatic beam (Cr
Ka, A=2.29A) impinges on a silicon perfect crys-
tal, cut parallel to the (111) plane, set for dif-
fracting the (222) reflection. It is well known that
the (222) is exceedingly weak because it is for-
bidden and owes its existence to asphericity of
bonding electrons.
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FIG. 2. Intensity of the (222) reflection as a function
of azimuthal angle. Each point represents an integrated
intensity with respect to ¢, angle of incidence. Two
strong umweg peaks, with angles 3’ apart, are located
at a position marked by a vertical dotted line at ¢
=49.08'. The two peak positions are not resolvable in
this figure. Experimentally, one single peak is ob-
served, 0.7° wide, with a peak intensity about a factor
of 6.5 greater than the two-beam (222) value.

The region around ¢=49° is explored in detail.
There are two strong umweg peaks in this region,
the (1,1,1) at ¢=49°06’ and the (1,T,T) at ¢ =
49°09’." Each experimental point in Fig., 2 cor-
responds to an integrated intensity with respect
to 6, the angle of incidence. The statistical ac-
curacy of each point is +0.2%. The solid curve
represents a four-beam calculation based on the
theory and the computational procedures described
in Ref, 5. Each point of the solid curve repre-
sents an integrated intensity, with respect to 6,
of the computed profile, while ¢ is held constant.
An important approximation is involved in this
step. The calculations are carried out under the
assumption of a plane wave, that is to say, a
perfectly parallel beam without vertical or hori-
zontal divergence, In the experiment, however,
the beam has a vertical divergence of about 0,7°,
as shown by the experimental width of the (2, 2, 2)
-(1,1,1)-(1,1,T) umweg peak. Since we are
considering the tail of the peak, we can safely
assume that the intensity varies more or less
linearly within the azimuthal “window” Ag¢(=0.7°),
so that a point for a specific value ¢, is really an
average over Ag and can be directly compared
to the calculated value. In this way we do not
need to perform a laborious two-dimensional in-
tegration (versus 6 and ¢) as would be required
if we were to use the fully excited umweg peaks,
for comparison between theory and experiment.®
The theoretical and experimental values have
been standardized by means of the two-beam
values.

As can be seen, the agreement between theory
and experiment is excellent. We emphasize that
the mechanism responsible for appreciable de-
viations from the two-beam value at angles ¢
that are 2° or 3° off the umweg peaks is basically
different from that involved in the tails of an
ordinary two-beam diffraction peak. In the latter,
momentum is not conserved, and the intensity
falls off very rapidly with 6. In a typical two-
beam diffraction peak the intensity falls to 5% of
the maximum value at an angle 6 =5”-10" off the
peak value, which corresponds to a distance be-
tween the Ewald sphere and the (4, 2, ) node of
the order of 0.001% of the radius. It turns out
that Ap, and Ax, as calculated from dynamical
theory (x is a direction normal to the surface and
Ax is the penetration, i.e., the extinction length
of the x-ray beam) satisfy the uncertainty prin-
ciple Ax Ap, 7.

In our experiment (Fig. 2) the main reflection,
the (222) reflection, is always fully excited, so
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that momentum is always conserved. The par-
ticipating (4’, %2’,1’) nodes perturb the (222) in-
tensity at large distances from the Ewald sphere.
For example, at ¢=45°06’, which is 4° off the
(1,1, 1) umweg peak, the (222) intensity is about
2% greater than the two-beam value, and the
participating (1,1, 1) and (1,1, 1) nodes have
distances that are, respectively, 3.2% and 1.0%
of the radius, which is enormous compared to
the 0.001% we found in the two-beam case. We
have, therefore, a situation in which Bragg re-
flections that cannot be excited because energy
would not be conserved in the process are able
to affect appreciably the (222) intensity. In this
sense we introduce the notion of virtual Bragg
scattering, in analogy with virtual transitions in
atomic and nuclear physics that do not conserve
energy. The deviations from the two-beam value
observed in Fig. 2, positive on the left side of the
umweg peaks and negative on the right side, do
contain phase information. To check this point,
we pretend for a moment that instead of silicon
we are dealing with a centrosymmetric crystal
with a different atomic arrangement within the
Bravais cell, In a centrosymmetric crystal, the
phases of all reflections can only be 0 or 7 rad.

It is conceivable that the “new” crystal we are
dealing with has the same structure factors as
silicon except that one of the structure factors
—for example, the one for the (1, I, 1) node—has
a different sign. This different sign has well
recognizable effects on the calculated intensities.
In this case the dotted curve is obtained in Fig. 2.
The sign of the asymmetry is now reversed. By
comparing our experimental points with the two
sets of calculated curves (dotted and solid lines),
the phase identification of the (1,1, T) node is un-
mistakable.

We believe that this method of phase identifica-
tion based on virtual Bragg scattering has a far
greater range of applicability than the methods
described in Refs. 5 and 6. For one thing, a
double integration is not needed in the computa-
tions, which drastically reduces computing time.

More importantly, we propose that this method
can be applied to mosaic crystals, the ones for
which real phase problems do exist. Our assump-
tion can be justified by the following considera-
tions. It is well known that dynamical and kine-
matical theory converge to the same results for
very weak reflections, This is shown to be
mathematically true, for example, in the Bragg
case of diffraction,® and it is true in general. The
physical reason for this convergence of the two
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theories is that dynamical theory implies multiple
scattering in a crystal which is spatially coherent
over long distances (centimeters) whereas kine-
matical theory assumes single-scattering proc-
esses. When the interaction between a photon and
a crystal is very weak, the photon will most like-
ly be scattered only once, even in a perfect crys-
tal.

This is exactly the situation of our experiment.
The primary reflection, the (222) reflection, is
very weak and therefore is entirely kinematic.
Other strong reflections are involved, but are
weakly excited as a consequence of a proper
choice of the azimuthal angle ¢. Within each
mosaic grain the scattering mechanism is that of
a perfect crystal. What makes the difference be-
tween a perfect and a mosaic crystal is the pos-
sibility of multiple-scattering events at distances
exceeding the average size of a mosaic block.
Such processes are likely to happen when the
scattering is strong and the crystal is perfect.

If, however, the scattering is weak, or the blocks
are randomly misoriented, multiple scattering
over distances greater than the average dimen-
sion of a mosaic block does not happen, and the
scattering mechanism in a perfect crystal, in the
two-beam as well as in the N-beam case, be-
comes indistinguishable from that operating in a
mosaic crystal.®°

In our experiment, the overall interaction be-
tween x-ray photons and crystal is very weak;
therefore crystal perfection should not play any
role in the diffracted intensities.

We therefore believe that the method is directly
applicable to mosaic crystals, and offers a prac-
tical solution to the phase problem.
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Domain Growth of Degenerate Phases

S. A, Safran
Theovetical Sciences Group, Exxon Research and Engineeving, Linden, New Jersey 07036
(Received 12 March 1981) :

The domain-coarsening kinetics of ordering systems with p-fold—degenerate equilibri-
um states, quenched from high temperatures, is analyzed. For long times (¢) and low
temperatures, the domain sizes equilibrate as a power law in ¢t for p<d+ 1 and as a
logarithmic function of ¢ for p = d + 1, where d is the spatial dimensionality of the system.
The relation of these slowly equilibrating, kinetically disordered systems to glasses and
suggestions for simulations and experiments are discussed.

PACS numbers: 64.60.My, 05.70.Fh, 81.30.Fb

The structures of charge-density—wave sys-
tems,' adsorbed atoms on surfaces,? some inter-
calation compounds,® ordering alloys,*® and anti-
ferromagnets®” are all characterized by a dis-
crete number of low-temperature phases which
are thermodynamically degenerate. For example,
certain ordered phases of rare-gas atoms on the
surface of Grafoil consist of three equivalent sub-
lattices (degeneracy p =3), whose thermodynamics
is derived from a Hamiltonian of the three-state
Potts model.> Recent Monte Carlo calculations of
the approach to equilibrium of ordering alloys and
magnets quenched from high temperatures have
indicated that, for spatial dimensionality d =3,
systems with twofold-~degenerate low-temperature
equilibrium phases (p=2) do approach equilibrium
as expected, with large domains of equivalent
phases.® However, the four-state antiferromag-
netic Potts model” ind =3, as well as®® the three-
state ferromagnetic Potts model (p =3) for d =2,
has been reported”® to maintain some of their
quenched-in disorder for quenches from high to
low temperatures. This phenomenon is reminis-
cent of descriptions of glasses'® and is in agree-
ment with a discussion by Lifshitz'! of the diffi-
culty of equilibrating systems with p =>4 +1.

This paper is a first step in establishing a quan-
titative basis for this suggestion by Lifshitz ™
using a time-dependent Ginzburg-Landau ap-
proach'®!® to calculate the domain-growth rate
for various values of d and p. The equilibration
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of systems with p =d +1 is shown to be frustrated
and hence characterized by a domain size which
grows only logarithmically in time. While some
of the arguments given here are independent of
the details of any particular system, it is useful
to consider a specific model. For example, the
three-state Potts model'* represents a system
where each lattice site is characterized by a spin
which can have three possible values. The order
parameter consists of an amplitude p and a phase
n.!* For fixed p, the free energy is minimized by
uniform, degenerate phases with =0 and + 7
representing the three possible spin values. For
long times after a quench from a high-tempera-
ture (T') disordered phase (p =0), it is expected
that the system is uniformly characterized by its
equilibrium value of p,(T") and by a spatially non-
uniform 7(¥), describing the arrangement of
microdomains whose characteristic size is much
greater than that of a lattice constant, but much
smaller than that of the sample.'®

For uniform p =p,(T'), the free-energy density
F(T) can be written in a continuum approximation
as

F =F,— b cos3np,® +5cp,2lvnl?, (1)

where b and d are positive constants and where
£, is the free energy of the uniform, single-do-
main system. Rescaling the energy by bp,®, the
length by (c/bp,)*'2, and generalizing to p-fold—
degenerate systems, the time dependence of 7 is
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